全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CXC类趋化因子与糖尿病肾脏病:思考与展望
CXC Chemokines and Diabetic Kidney Disease: Reflections and Prospects

DOI: 10.12677/acm.2025.1571956, PP. 55-59

Keywords: 糖尿病肾脏病,趋化因子,炎症反应,纤维化
Diabetic Kidney Disease
, Chemokines, Inflammatory Response, Fibrosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病肾脏病(Diabetic kidney disease, DKD)作为糖尿病微血管疾病(Diabetic microvascular disease, DMiVD)的常见临床表现类型,其全球发病率逐年攀升,目前已成为影响全球健康的问题之一。趋化因子是具有调控细胞活动、炎症反应和促进细胞迁移等功能的小分子蛋白。近年研究表明,作为趋化因子家族的重要亚型,CXC类趋化因子通过调控炎性反应和纤维化进程在DKD发生发展中发挥关键作用。深入解析其作用机制可为DKD的早期诊断和靶向治疗提供新策略。
Diabetic kidney disease (DKD), as a common clinical manifestation of diabetic microvascular complications (DMiVD), has seen a steadily increasing global incidence and has become one of the significant global health concerns. Chemokines are small molecular proteins that regulate cellular activities, inflammatory responses, and promote cell migration. Recent studies have shown that CXC chemokines, a critical subtype within the chemokine family, play a pivotal role in the pathogenesis and progression of DKD by modulating inflammatory reactions and fibrotic processes. Elucidating their underlying mechanisms may provide novel strategies for early diagnosis and targeted therapy of DKD.

References

[1]  中国微循环学会糖尿病与微循环专业委员会, 中华医学会内分泌学分会基层内分泌代谢病学组. 基层糖尿病微血管疾病筛查与防治专家共识(2024) [J]. 中国全科医学, 2024, 27(32): 3969-3986.
[2]  Raziyeva, K., Kim, Y., Zharkinbekov, Z., Kassymbek, K., Jimi, S. and Saparov, A. (2021) Immunology of Acute and Chronic Wound Healing. Biomolecules, 11, Article No. 700.
https://doi.org/10.3390/biom11050700
[3]  Li, Y., Yu, H. and Feng, J. (2023) Role of Chemokine-Like Factor 1 as an Inflammatory Marker in Diseases. Frontiers in Immunology, 14, Article ID: 1085154.
https://doi.org/10.3389/fimmu.2023.1085154
[4]  Cui, S., Qiao, L., Yu, S., Men, L., Li, Y., Li, F., et al. (2019) The Antagonist of CXCR1 and CXCR2 Protects db/db Mice from Metabolic Diseases through Modulating Inflammation. American Journal of Physiology-Endocrinology and Metabolism, 317, E1205-E1217.
https://doi.org/10.1152/ajpendo.00117.2019
[5]  Bai, Y., Li, H. and Dong, J. (2020) Up-Regulation of mIR-20a Weakens Inflammation and Apoptosis in High-Glucose-Induced Renal Tubular Cell Mediating Diabetic Kidney Disease by Repressing CXCL8 Expression. Archives of Physiology and Biochemistry, 128, 1603-1610.
https://doi.org/10.1080/13813455.2020.1785506
[6]  Wang, Y., Liu, L., Ge, M., Cui, J., Dong, X. and Shao, Y. (2023) Acacetin Attenuates the Pancreatic and Hepatorenal Dysfunction in Type 2 Diabetic Rats Induced by High-Fat Diet Combined with Streptozotocin. Journal of Natural Medicines, 77, 446-454.
https://doi.org/10.1007/s11418-022-01675-6
[7]  Eleftheriadis, T., Pissas, G., Filippidis, G., Efthymiadi, M., Liakopoulos, V. and Stefanidis, I. (2022) Dapagliflozin Prevents High-Glucose-Induced Cellular Senescence in Renal Tubular Epithelial Cells. International Journal of Molecular Sciences, 23, Article No. 16107.
https://doi.org/10.3390/ijms232416107
[8]  Takashima, S., Fujita, H., Fujishima, H., Shimizu, T., Sato, T., Morii, T., et al. (2016) Stromal Cell-Derived Factor-1 Is Upregulated by Dipeptidyl Peptidase-4 Inhibition and Has Protective Roles in Progressive Diabetic Nephropathy. Kidney International, 90, 783-796.
https://doi.org/10.1016/j.kint.2016.06.012
[9]  Zhang, Q., He, L., Dong, Y., Fei, Y., Wen, J., Li, X., et al. (2020) Sitagliptin Ameliorates Renal Tubular Injury in Diabetic Kidney Disease via Stat3‐Dependent Mitochondrial Homeostasis through Sdf‐1α/CXCR4 Pathway. The FASEB Journal, 34, 7500-7519.
https://doi.org/10.1096/fj.201903038r
[10]  G, S.K., N, K., Elumalai, E. and Gupta, K.K. (2023) Identification of CXCR4 Inhibitors as a Key Therapeutic Small Molecule in Renal Fibrosis. Journal of Biomolecular Structure and Dynamics, 42, 8441-8453.
https://doi.org/10.1080/07391102.2023.2246575
[11]  Sayyed, S.G., Hägele, H., Kulkarni, O.P., Endlich, K., Segerer, S., Eulberg, D., et al. (2009) Podocytes Produce Homeostatic Chemokine Stromal Cell-Derived Factor-1/CXCL12, Which Contributes to Glomerulosclerosis, Podocyte Loss and Albuminuria in a Mouse Model of Type 2 Diabetes. Diabetologia, 52, 2445-2454.
https://doi.org/10.1007/s00125-009-1493-6
[12]  Hu, Z., Ma, K., Zhang, Y., Wang, G., Liu, L., Lu, J., et al. (2018) Inflammation-Activated CXCL16 Pathway Contributes to Tubulointerstitial Injury in Mouse Diabetic Nephropathy. Acta Pharmacologica Sinica, 39, 1022-1033.
https://doi.org/10.1038/aps.2017.177
[13]  Gutwein, P., Abdel‐Bakky, M.S., Doberstein, K., Schramme, A., Beckmann, J., Schaefer, L., et al. (2009) CXCL16 and oxLDL Are Induced in the Onset of Diabetic Nephropathy. Journal of Cellular and Molecular Medicine, 13, 3809-3825.
https://doi.org/10.1111/j.1582-4934.2009.00761.x
[14]  Zhao, L., Wu, F., Jin, L., Lu, T., Yang, L., Pan, X., et al. (2014) Serum CXCL16 as a Novel Marker of Renal Injury in Type 2 Diabetes Mellitus. PLOS ONE, 9, e87786.
https://doi.org/10.1371/journal.pone.0087786
[15]  Ye, S., Zhang, M., Zheng, X., Li, S., Fan, Y., Wang, Y., et al. (2024) YAP1 Preserves Tubular Mitochondrial Quality Control to Mitigate Diabetic Kidney Disease. Redox Biology, 78, Article ID: 103435.
https://doi.org/10.1016/j.redox.2024.103435
[16]  Tang, H., Yang, M., Liu, Y., Liu, H., Sun, L. and Song, P. (2021) The CXCL1-CXCR2 Axis Mediates Tubular Injury in Diabetic Nephropathy through the Regulation of the Inflammatory Response. Frontiers in Physiology, 12, Article ID: 782677.
https://doi.org/10.3389/fphys.2021.782677
[17]  Chen, C., Lin, L., Wu, Y., Chen, J. and Chang, T. (2024) CXCL5 Inhibition Improves Kidney Function by Protecting Renal Tubular Epithelial Cells in Diabetic Kidney Disease. Clinical Immunology, 268, Article ID: 110369.
https://doi.org/10.1016/j.clim.2024.110369
[18]  Sun, M., Wang, S., Li, X., Shen, Y., Lu, J., Tian, X., et al. (2019) RETRACTED: CXCL6 Promotes Renal Interstitial Fibrosis in Diabetic Nephropathy by Activating JAK/STAT3 Signaling Pathway. Frontiers in Pharmacology, 10, Article No. 224.
https://doi.org/10.3389/fphar.2019.00224
[19]  Wang, S., Chen, S., Gao, Y. and Zhou, H. (2023) Bioinformatics Led Discovery of Biomarkers Related to Immune Infiltration in Diabetes Nephropathy. Medicine, 102, e34992.
https://doi.org/10.1097/md.0000000000034992
[20]  Gao, Q., Jin, H., Xu, W. and Wang, Y. (2023) Predicting Diagnostic Gene Biomarkers in Patients with Diabetic Kidney Disease Based on Weighted Gene Co Expression Network Analysis and Machine Learning Algorithms. Medicine, 102, e35618.
https://doi.org/10.1097/md.0000000000035618
[21]  Jin, D., Tu, X., Xu, W., Zheng, H., Zeng, J., Bi, P., et al. (2024) Identification and Validation of Diagnostic Markers Related to Immunogenic Cell Death and Infiltration of Immune Cells in Diabetic Nephropathy. International Immunopharmacology, 143, Article ID: 113236.
https://doi.org/10.1016/j.intimp.2024.113236

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133