|
重庆市乡村地区义务教育资源禀赋差异及影响因素
|
Abstract:
义务教育资源禀赋水平评估是推动教育均衡发展的重要基础,通过构建乡村地区义务教育资源禀赋评估方法,并采用热点分析、最优尺度回归模型和地理探测器方法深入解析空间差异及影响因素。结果表明:(1) 全市义务教育资源覆盖指数、可达性指数、环境限制指数及资源禀赋综合指数均呈现明显的“西高东低”趋势。(2) 义务教育资源禀赋热点、冷点区域分别占乡镇数量27.97%、23.75%,热点区域集中在经济基础、居民生活水平较好的主城都市区,冷点区域集中在大巴山、七曜山、武陵山等山区。(3) 义务教育资源禀赋受居民消费水平、乡村生境质量、城镇化水平、乡村交通便利程度影响较大,重要性系数分别为0.710、0.390、?0.241、0.146。(4) 全市范围和渝东南城镇群的居民消费水平解释力最强,主城都市区和渝东北城镇群的乡村生境质量解释力最强,两两因素组合均表现出非线性增强和双因子增强。研究成果可为乡村地区教育均衡发展政策制定提供方法和数据参考。
The evaluation of the level of resource endowment in compulsory education is an important foundation for promoting balanced development of education. To clearly identify the differences in resource endowment and influencing factors of compulsory education in rural areas of Chongqing, we constructed an evaluation method and used the optimal scale regression model and geographic detector method to analyze its key influencing factors and factor interactions. The results show that: (1) The resource coverage index, reachability index, environmental restriction index, and comprehensive index of compulsory education’s resource endowment in Chongqing show an obvious trend of “high in the west and low in the east”. (2) The number of townships in the hot and cold spots of compulsory education’s resource endowment accounts for 27.97% and 23.75% of the total, respectively. The hot spots are concentrated in the main urban areas with good economic foundations and residents’ living standards, while the cold spots are concentrated in mountainous areas such as Daba Mountain, Qiyao Mountain, and Wuling Mountain. (3) The resource endowment of compulsory education is greatly influenced by residents’ consumption level, rural habitat quality, urbanization level, and rural transportation convenience, with importance coefficients of 0.710, 0.390, ?0.241, and 0.146, respectively. (4) The explanatory power of residents’ consumption level within the scope of Chongqing city and the urban cluster in southeastern Chongqing is the strongest, and the explanatory power of rural habitat quality in the main urban area and the urban cluster in northeastern Chongqing is the strongest. In addition, both combinations of factors exhibit nonlinear enhancement and dual factor enhancement. The research results can provide methods and data references for the formulation of policies for the balanced development of education in rural areas.
[1] | 秦玉友. 聚焦优质均衡与城乡一体化——新时代我国义务教育质量指标体系建构研究[J]. 东北师大学报(哲学社会科学版), 2023(1): 22-31, 46. |
[2] | 李宜江. 协同治理视域下长三角义务教育优质均衡发展研究[J]. 现代教育管理, 2023(3): 18-28. |
[3] | 王世琼, 刘睿, 戴技才, 等. 重庆市乡村义务教育资源可得性差异及影响因素[J]. 热带地理, 2022, 42(8): 1349-1362. |
[4] | Moreno-Monroy, A.I., Lovelace, R. and Ramos, F.R. (2018) Public Transport and School Location Impacts on Educational Inequalities: Insights from Sao Paulo. Journal of Transport Geography, 67, 110-118. https://doi.org/10.1016/j.jtrangeo.2017.08.012 |
[5] | Sageman, J. (2022) School Closures and Rural Population Decline. Rural Sociology, 87, 960-992. https://doi.org/10.1111/ruso.12437 |
[6] | 张宁娟. 义务教育优质均衡的时代内涵与具体实践[J]. 上海教育科研, 2022(7): 12-16. |
[7] | 何爱云. 基本公共服务均等化视角下农村义务教育教师队伍发展研究[J]. 教育评论, 2021(12): 139-143. |
[8] | 郅庭瑾, 尚伟伟. 人口变动背景下义务教育资源配置的挑战与应对[J]. 人民教育, 2020(1): 39-42. |
[9] | 奥勇, 蒋嶺峰, 白召弟, 等. 基于格网GIS的黄河流域土地生态质量综合评价[J]. 干旱区地理, 2022, 45(1): 164-175. |
[10] | 刘婷, 邓伟, 周渝, 等. 重庆市“一区两群”生境质量及其地形梯度分异[J]. 环境科学与技术, 2020, 43(11): 227-236. |
[11] | Liu, J.Y., Ning, J., Kuang, W.H., et al. (2018) Spatio-Temporal Patterns and Characteristics of Land-Use Change in China during 2010-2015. Acta Geographica Sinica, 73, 789-802. https://doi.org/10.1007/s11442-018-1490-0 |
[12] | 张务农. 义务教育优质均衡发展评估指标体系构建现状审视及优化路径[J]. 当代教育科学, 2023(1): 47-55. |
[13] | 黄汇, 刘祖玲, 李宝瑜, 等. 国家标准《中小学校设计规范》GB 50099-2011编制[J]. 建设科技, 2014, 259(Z1): 144. |
[14] | 高跃光, 张蓉. 义务教育财政资金管理改革与农村教育发展[J]. 财政研究, 2022(3): 74-91. |
[15] | 王利, 路遥, 刘万波, 等. 义务教育资源配置时空演变与影响因素分析——以辽宁省为例[J]. 资源开发与市场, 2021, 37(9): 1039-1045, 1107. |
[16] | 赵林, 王振, 金芮合, 等. 山东省基础教育师资配置的时空格局与影响因素[J]. 地域研究与开发, 2021, 40(2): 33-39. |
[17] | Olivares, B.O., Calero, J., Rey, J.C., et al. (2022) Correlation of Banana Productivity Levels and Soil Morphological Properties Using Regularized Optimal Scaling Regression. Catena, 208, Article ID: 105718. https://doi.org/10.1016/j.catena.2021.105718 |
[18] | Cao, Y.R. and Yang, N.H. (2019) Regression Method Based on SPSS Optimal Scale. Statistics & Decision, 35, 72-74. |
[19] | 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134. |