|
2H-色烯化合物的合成研究进展
|
Abstract:
2H-色烯化合物是一类含有氧原子的杂环化合物,广泛存在于天然产物中,表现出抗菌、抗炎、抗氧化、抗癌等活性,在合成化学和化学生物学中,2H-色烯骨架也是重要的合成砌块。因此发展高效合成2H-色烯的方法具有良好的研究价值和应用前景。目前合成2H-色烯的方法有分子内环化反应和分子间环加成反应,分子间环加成反应可细分为分子间[3 + 3]和分子间[4 + 2]反应。本文主要介绍了近年来通过分子内环化反应和分子间环加成反应合成2H-色烯的方法,为这一类化合物的合成研究提供借鉴。
2H-chromene compounds are a class of heterocyclic compounds containing oxygen atoms, widely present in natural products. They exhibit activities such as antibacterial, anti-inflammatory, antioxidant, and anticancer properties. In synthetic chemistry and chemical biology, 2H-chromene skeleton is also an important synthetic block. Therefore, developing efficient method for synthesizing 2H-chromenes has good research value and application prospects. Currently, methods for synthesizing 2H-chromenes are divided into intramolecular cyclization reactions and intermolecular cycloaddition reactions. Intermolecular cycloaddition reactions can be further subdivided into intermolecular [3 + 3] and [4 + 2] reactions. This article mainly introduces recent methods for synthesizing 2H-chromenes through intramolecular cyclization and intermolecular cycloaddition reactions, providing a reference for the synthetic research of this class of compounds.
[1] | Brimble, M.A., Gibson, J.S. and Sperry, J. (2008) Pyrans and Their Benzo Derivatives: Synthesis. Comprehensive Heterocyclic Chemistry III, 7, 419-699. https://doi.org/10.1016/b978-008044992-0.00608-8 |
[2] | Zeni, G. and Larock, R.C. (2004) Synthesis of Heterocycles via Palladium Π-Olefin and Π-Alkyne Chemistry. Chemical Reviews, 104, 2285-2310. https://doi.org/10.1021/cr020085h |
[3] | Hussain, M.K., Ansari, M.I., Yadav, N., Gupta, P.K., Gupta, A.K., Saxena, R., et al. (2014) Design and Synthesis of ERα/ERβ Selective Coumarin and Chromene Derivatives as Potential Anti-Breast Cancer and Anti-Osteoporotic Agents. RSC Advances, 4, 8828-8845. https://doi.org/10.1039/c3ra45749d |
[4] | Majumdar, N., Paul, N.D., Mandal, S., de Bruin, B. and Wulff, W.D. (2015) Catalytic Synthesis of 2H-Chromenes. ACS Catalysis, 5, 2329-2366. https://doi.org/10.1021/acscatal.5b00026 |
[5] | Azizmohammadi, M., Khoobi, M., Ramazani, A., Emami, S., Zarrin, A., Firuzi, O., et al. (2013) 2H-Chromene Derivatives Bearing Thiazolidine-2,4-Dione, Rhodanine or Hydantoin Moieties as Potential Anticancer Agents. European Journal of Medicinal Chemistry, 59, 15-22. https://doi.org/10.1016/j.ejmech.2012.10.044 |
[6] | Bamfield, P. (2010) Chromic Phenomena: Technological Applications of Colour Chemistry. Royal Society of Chemistry. |
[7] | Moorthy, J.N., Mandal, S., Mukhopadhyay, A. and Samanta, S. (2013) Helicity as a Steric Force: Stabilization and Helicity-Dependent Reversion of Colored o-Quinonoid Intermediates of Helical Chromenes. Journal of the American Chemical Society, 135, 6872-6884. https://doi.org/10.1021/ja312027c |
[8] | Balabani, A., Hadjipavlou-Litina, D.J., Litinas, K.E., Mainou, M., Tsironi, C. and Vronteli, A. (2011) Synthesis and Biological Evaluation of (2,5-Dihydro-1h-Pyrrol-1-Yl)-2h-Chromen-2-Ones as Free Radical Scavengers. European Journal of Medicinal Chemistry, 46, 5894-5901. https://doi.org/10.1016/j.ejmech.2011.09.053 |
[9] | Reddy, C.S., Devi, M.V., Kumar, G.R., Rao, L.S. and Nagaraj, A. (2010) Synthesis and Antimicrobial Activity of Novel 2‐(Aryl)‐3‐[5‐(2‐Oxo‐2h‐3‐Chromenyl)‐1,3‐Oxazol‐2‐yl]‐1,3‐Thiazolan‐4‐Ones. Journal of Heterocyclic Chemistry, 48, 176-182. https://doi.org/10.1002/jhet.505 |
[10] | Dong, Y., Nakagawa-Goto, K., Lai, C., Morris-Natschke, S.L., Bastow, K.F., Kim, Y., et al. (2012) Antitumor Agents. 289. Design, Synthesis, and Anti-Breast Cancer Activity in Vivo of 4-Amino-2h-Benzo[h]Chromen-2-One and 4-Amino-7,8,9,10-Tetrahydro-2h-Benzo[h]Chromen-2-One Analogues with Improved Water Solubility. Journal of Natural Products, 75, 370-377. https://doi.org/10.1021/np2007878 |
[11] | Horton, D.A., Bourne, G.T. and Smythe, M.L. (2003) The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures. Chemical Reviews, 103, 893-930. https://doi.org/10.1021/cr020033s |
[12] | Kogan, N.M., Rabinowitz, R., Levi, P., Gibson, D., Sandor, P., Schlesinger, M., et al. (2004) Synthesis and Antitumor Activity of Quinonoid Derivatives of Cannabinoids. Journal of Medicinal Chemistry, 47, 3800-3806. https://doi.org/10.1021/jm040042o |
[13] | Siyang, H.X., Wu, X.R., Ji, X.Y., Wu, X.Y. and Liu, P.N. (2014) A Copper(II) Perchlorate-Promoted Tandem Reaction of Internal Alkynol and Salicyl N-Tosylhydrazone: Direct Access to Isochromeno[3,4-b]Chromene. Chemical Communications, 50, 8514-8517. https://doi.org/10.1039/c4cc02862g |
[14] | Sun, J., Zhao, J., Guo, H. and Wu, W. (2012) Visible-Light Harvesting Iridium Complexes as Singlet Oxygen Sensitizers for Photooxidation of 1,5-Dihydroxynaphthalene. Chemical Communications, 48, 4169-4171. https://doi.org/10.1039/c2cc16690a |
[15] | Wang, Z., Lei, Y., Zhou, M., Chen, G., Song, R., Xie, Y., et al. (2010) Iron-Mediated [3 + 2] or [3 + 3] Annulation of 2-(2-(Ethynyl)Phenoxy)-1-Arylethanones: Selective Synthesis of Indeno[1,2-c]Chromenes and 5h-Naphtho[1,2-c]Chromenes. Organic Letters, 13, 14-17. https://doi.org/10.1021/ol102761m |
[16] | Zheng, Y., Qiu, L., Hong, K., Dong, S. and Xu, X. (2017) Copper‐ or Thermally Induced Divergent Outcomes: Synthesis of 4‐Methyl 2H‐Chromenes and Spiro‐4H‐Pyrazoles. Chemistry—A European Journal, 24, 6705-6711. https://doi.org/10.1002/chem.201704759 |
[17] | Faßbender, S.I., Metternich, J.B. and Gilmour, R. (2018) Spatiotemporal Control of Pre-Existing Alkene Geometry: A Bio-Inspired Route to 4-Trifluoromethyl-2H-Chromenes. Organic Letters, 20, 724-727. https://doi.org/10.1021/acs.orglett.7b03859 |
[18] | Tu, M., Mei, G., Shi, F., Liu, S., Jiang, X. and Wu, S. (2018) Efficient Synthesis of Chromenes from Vinyl O-Quinone Methides via a Brønsted Acid Catalyzed Electrocyclization Process. Synthesis, 50, 2416-2422. https://doi.org/10.1055/s-0037-1609483 |
[19] | Cervi, A., Vo, Y., Chai, C.L.L., Banwell, M.G., Lan, P. and Willis, A.C. (2020) Gold(I)-Catalyzed Intramolecular Hydroarylation of Phenol-Derived Propiolates and Certain Related Ethers as a Route to Selectively Functionalized Coumarins and 2H-Chromenes. The Journal of Organic Chemistry, 86, 178-198. https://doi.org/10.1021/acs.joc.0c02011 |
[20] | Song, L., Su, Q., Lin, X., Du, Z., Xu, H., Ouyang, M., et al. (2020) Cascade Claisen and Meinwald Rearrangement for One-Pot Divergent Synthesis of Benzofurans and 2H-Chromenes. Organic Letters, 22, 3004-3009. https://doi.org/10.1021/acs.orglett.0c00770 |
[21] | Zhang, J., Qiu, Y., Zhang, B., Huang, Z. and He, Z. (2021) P(NMe2)3-Mediated Reductive Intramolecular Annulation of Benzoylformates Tethered with a Trisubstituted Alkene Unit and Synthesis of 2,2-Disubstituted 2H-Chromenes. Organic Letters, 23, 1880-1885. https://doi.org/10.1021/acs.orglett.1c00286 |
[22] | Zeng, H., Ju, J. and Hua, R. (2011) ReCl(CO)5-Catalyzed Cyclocondensation of Phenols with 2-Methyl-3-Butyn-2-Ol to Afford 2,2-Dimethyl-2H-Chromenes. Tetrahedron Letters, 52, 3926-3928. https://doi.org/10.1016/j.tetlet.2011.05.093 |
[23] | Böhmdorfer, S., Kloser, E., Patel, A., Gille, L., Mereiter, K. and Rosenau, T. (2011) Novel Tocopherol Derivatives. Part 32: On the Bromination of Pyrano[3,2-f]chromenes Related to γ-Tocopherol. Tetrahedron, 67, 6181-6185. https://doi.org/10.1016/j.tet.2011.06.070 |
[24] | Escande, V., Velati, A. and Grison, C. (2014) Ecocatalysis for 2H-Chromenes Synthesis: An Integrated Approach for Phytomanagement of Polluted Ecosystems. Environmental Science and Pollution Research, 22, 5677-5685. https://doi.org/10.1007/s11356-014-3433-3 |
[25] | Khodabakhshi, S., Karami, B., Eskandari, K. and Farahi, M. (2014) Synthesis of New 4-Aroyl-Pyrano[c]Chromenes via a One-Pot, Three-Component Reaction Based on Aryl Glyoxals. Tetrahedron Letters, 55, 3753-3755. https://doi.org/10.1016/j.tetlet.2014.05.072 |
[26] | Raju, B.C., Saidachary, G., Kumar, J.A. and Sridhar, B. (2011) Facile Synthesis of Substituted Ethyl 2‐(Chloromethyl)‐2‐Hydroxy‐2H‐1‐Benzopyran‐3‐Carboxylates. Helvetica Chimica Acta, 94, 248-253. https://doi.org/10.1002/hlca.201000181 |
[27] | Xu, C., Yang, G., Wang, C., Fan, S., Xie, L. and Gao, Y. (2013) An Efficient Solvent-Free Synthesis of 2-Hydroxy-2-(Trifluoromethyl)-2H-Chromenes Using Silica-Immobilized L-Proline. Molecules, 18, 11964-11977. https://doi.org/10.3390/molecules181011964 |
[28] | Lanari, D., Rosati, O. and Curini, M. (2014) A Solvent-Free Protocol for the Synthesis of 3-Formyl-2h-Chromenes via Domino Oxa Michael/Aldol Reaction. Tetrahedron Letters, 55, 1752-1755. https://doi.org/10.1016/j.tetlet.2014.01.110 |
[29] | Prasad, S.S., Joshi, D.R. and Kim, I. (2020) Facile Access to 3,4-Disubstituted 2h-Chromenes via Domino [4 + 2] Annulation. Synthesis, 53, 1503-1512. https://doi.org/10.1055/s-0040-1706089 |
[30] | Harris, D.H., Barichello, R.O. and Bolshan, Y. (2020) Metal‐free Alkenylation of Salicylaldehydes with Boronic Acids: Synthesis of Skipped Dienes and 2H‐Chromenes. European Journal of Organic Chemistry, 2020, 6000-6003. https://doi.org/10.1002/ejoc.202001019 |
[31] | Somprasong, S., Prasitwatcharakorn, W. and Luanphaisarnnont, T. (2020) Efficient Synthesis of 2H-Chromene Derivatives via a Dual-Organocatalytic Reaction. Tetrahedron Letters, 61, Article ID: 152402. https://doi.org/10.1016/j.tetlet.2020.152402 |
[32] | Ma, Y., He, X., Yang, Q., Boucherif, A. and Xuan, J. (2021) Recent Advances in Organocatalytic Asymmetric Cycloaddition Reactions through Ortho‐Quinone Methide Scaffolds. Asian Journal of Organic Chemistry, 10, 1233-1250. https://doi.org/10.1002/ajoc.202100141 |
[33] | Rani, D., Gulati, V., Guleria, M., Singh, S.P. and Agarwal, J. (2022) Aqueous Synthesis of 2-Aryl-3-Nitro-2H Chromenes via L-Prolinamide Mediated Tandem OXA-Michael Henry Reactions. Journal of Molecular Structure, 1265, Article ID: 133341. https://doi.org/10.1016/j.molstruc.2022.133341 |