|
纳米水铁矿吸附抗生素的研究进展
|
Abstract:
水铁矿是广泛分布于地球各个圈层的纳米矿物,具有颗粒尺寸小和比表面积大的特点,因而具有更高的吸附容量和表面活性。近年来,关于水铁矿对环境中常见抗生素的吸附行为及其作用机制的研究不断深入。本文系统综述了影响水铁矿吸附抗生素的主要环境因素,包括pH、离子强度和共存有机质,分析了水铁矿吸附抗生素的主要机制,如静电作用、表面络合作用等。同时,对未来研究方向进行简要探讨。本综述有助于加深对纳米水铁矿–抗生素相互作用的认识,为抗生素污染的治理提供理论支撑。
Ferrihydrite, a nanoscale iron (oxyhydr)oxide mineral, is ubiquitously distributed across various Earth systems. Owing to its ultrafine particle size and high specific surface area, ferrihydrite exhibits remarkable surface reactivity and sorption capacity. In recent years, significant attention has been directed toward elucidating its adsorption behavior and underlying mechanisms with respect to environmentally relevant antibiotics. This review provides a comprehensive overview of the key environmental factors governing antibiotic adsorption by ferrihydrite, including pH, ionic strength, and the presence of coexisting natural organic matter. In addition, the principal sorption mechanisms—such as electrostatic interactions and surface complexation—are critically examined. Future research directions are briefly outlined to highlight remaining challenges and opportunities. This work aims to advance the understanding of nano-ferrihydrite-antibiotic interactions and to support the development of effective strategies for antibiotic pollution control.
[1] | Schwertmann, U. and Fischer, W.R. (1973) Natural “Amorphous” Ferric Hydroxide. Geoderma, 10, 237-247. https://doi.org/10.1016/0016-7061(73)90066-9 |
[2] | Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. Wiley. |
[3] | 王小明. 几种亚稳态铁氧化物的结构、形成转化及其表面物理化学特性[D]: [博士学位论文]. 武汉: 华中农业大学, 2015. |
[4] | 田雷. 重金属离子在水铁矿上吸附解吸动力学: 建立统一的模型[D]: [硕士学位论文]. 广州: 华南理工大学, 2018. |
[5] | 朱雁平. 基于水铁矿的高效异相芬顿催化材料的构建及性能研究[D]: [博士学位论文]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019. |
[6] | Hiemstra, T. (2015) Formation, Stability, and Solubility of Metal Oxide Nanoparticles: Surface Entropy, Enthalpy, and Free Energy of Ferrihydrite. Geochimica et Cosmochimica Acta, 158, 179-198. https://doi.org/10.1016/j.gca.2015.02.032 |
[7] | Tang, J.P., Wang, S., Tai, Y.P., Tam, N.F., et al. (2020) Evaluation of Factors Influencing Annual Occurrence, Bioaccumulation, and Biomagnification of Antibiotics in Planktonic Food Webs of a Large Subtropical River in South China. Water Research, 170, Article 115302. |
[8] | Xu, Y., Yu, X., Xu, B., Peng, D. and Guo, X. (2021) Sorption of Pharmaceuticals and Personal Care Products on Soil and Soil Components: Influencing Factors and Mechanisms. Science of the Total Environment, 753, Article 141891. https://doi.org/10.1016/j.scitotenv.2020.141891 |
[9] | Thompson, A., Chadwick, O.A., Rancourt, D.G. and Chorover, J. (2006) Iron-Oxide Crystallinity Increases during Soil Redox Oscillations. Geochimica et Cosmochimica Acta, 70, 1710-1727. https://doi.org/10.1016/j.gca.2005.12.005 |
[10] | Chen, J., Zhang, Q., Zhu, Y., Zhang, M., Zhu, Y., Farooq, U., et al. (2023) Adsorption of Fluoroquinolone Antibiotics onto Ferrihydrite under Different Anionic Surfactants and Solution pH. Environmental Science and Pollution Research, 30, 78229-78242. https://doi.org/10.1007/s11356-023-28059-x |
[11] | He, J., Yang, C., Deng, Y., Ouyang, Z., Huang, Z., Yang, J., et al. (2022) Mechanistic Insights into the Environmental Fate of Tetracycline Affected by Ferrihydrite: Adsorption versus Degradation. Science of the Total Environment, 811, Article 152283. https://doi.org/10.1016/j.scitotenv.2021.152283 |
[12] | Wang, L., Zhang, L., Feng, B., Hua, X., Li, Y., Zhang, W., et al. (2022) The Ph Dependence and Role of Fluorinated Substituent of Enoxacin Binding to Ferrihydrite. Science of the Total Environment, 823, Article 153707. https://doi.org/10.1016/j.scitotenv.2022.153707 |
[13] | 陈月. 水铁矿/腐殖酸对磺胺类抗生素的吸附和光解行为研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2017. |
[14] | Antelo, J., Fiol, S., Pérez, C., Mariño, S., Arce, F., Gondar, D., et al. (2010) Analysis of Phosphate Adsorption onto Ferrihydrite Using the CD-MUSIC Model. Journal of Colloid and Interface Science, 347, 112-119. https://doi.org/10.1016/j.jcis.2010.03.020 |
[15] | Chen, J., Xu, Y., Zheng, Z., Wei, Q., Farooq, U., Lu, T., et al. (2022) The Mechanisms Involved into the Inhibitory Effects of Ionic Liquids Chemistry on Adsorption Performance of Ciprofloxacin onto Inorganic Minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article 129422. https://doi.org/10.1016/j.colsurfa.2022.129422 |
[16] | Bao, Y., Bolan, N.S., Lai, J., Wang, Y., Jin, X., Kirkham, M.B., et al. (2021) Interactions between Organic Matter and Fe (Hydr)oxides and Their Influences on Immobilization and Remobilization of Metal(loid)s: A Review. Critical Reviews in Environmental Science and Technology, 52, 4016-4037. https://doi.org/10.1080/10643389.2021.1974766 |
[17] | Peng, H., Liang, N., Li, H., Chen, F., Zhang, D., Pan, B., et al. (2015) Contribution of Coated Humic Acids Calculated through Their Surface Coverage on Nano Iron Oxides for Ofloxacin and Norfloxacin Sorption. Environmental Pollution, 204, 191-198. https://doi.org/10.1016/j.envpol.2015.04.029 |
[18] | Lv, J., Zhang, S., Wang, S., Luo, L., Cao, D. and Christie, P. (2016) Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 50, 2328-2336. https://doi.org/10.1021/acs.est.5b04996 |
[19] | Ye, Y., Cai, X., Wang, Z. and Xie, X. (2022) Characterization of Dissolved Black Carbon and Its Binding Behaviors to Ceftazidime and Diclofenac Pharmaceuticals: Employing the Molecular Weight Fractionation. Environmental Pollution, 315, Article 120449. https://doi.org/10.1016/j.envpol.2022.120449 |
[20] | Ye, Y., Wang, Z., Liu, L., Qi, K. and Xie, X. (2023) Novel Insights into the Temporal Molecular Fractionation of Dissolved Black Carbon at the Iron Oxyhydroxide—Water Interface. Water Research, 229, Article 119410. https://doi.org/10.1016/j.watres.2022.119410 |
[21] | 张莉. 赤霉酸在水铁矿上的吸附和转化机制研究[D]: [博士学位论文]. 北京: 中国地质大学(北京), 2019. |
[22] | Norén, K. and Persson, P. (2007) Adsorption of Monocarboxylates at the Water/Goethite Interface: The Importance of Hydrogen Bonding. Geochimica et Cosmochimica Acta, 71, 5717-5730. https://doi.org/10.1016/j.gca.2007.04.037 |
[23] | Wu, T., Xue, Q., Liu, F., Zhang, J., Zhou, C., Cao, J., et al. (2019) Mechanistic Insight into Interactions between Tetracycline and Two Iron Oxide Minerals with Different Crystal Structures. Chemical Engineering Journal, 366, 577-586. https://doi.org/10.1016/j.cej.2019.02.128 |