|
分子内烯–羰复分解反应合成五元环研究进展
|
Abstract:
烯–羰复分解反应是有机合成领域的重要合成方法,历经数十年发展已具有较为完善的催化体系。分子内的烯–羰复分解反应为构建碳环或杂环化合物提供了高效途径,对于药物及天然产物的合成具有良好的研究价值。本文主要介绍了烯–羰复分解反应在合成五元环化合物中的应用,并系统介绍了相关催化剂及其反应机理。根据催化剂类型的不同,本文将其分为Lewis酸和Br?nsted酸两大类进行阐述。
Olefin-carbonyl metathesis is an important synthetic methodology in organic chemistry, and after decades of development, it has established a well-defined catalytic system. Intramolecular olefin-carbonyl metathesis provides an efficient approach for constructing carbocyclic or heterocyclic compounds, demonstrating significant research value in the synthesis of pharmaceuticals and natural products. This article focuses on the application of olefin-carbonyl metathesis in the synthesis of five-membered rings and systematically discusses the relevant catalysts and their reaction mechanisms. Based on the catalyst types, they are categorized into two major classes: Lewis acid-catalyzed and Br?nsted acid-catalyzed reactions.
[1] | Cheng, Z., Huang, K., Wang, C., Chen, L., Li, X., Hu, Z., et al. (2025) Catalytic Remodeling of Complex Alkenes to Oxonitriles through C = C Double Bond Deconstruction. Science, 387, 1083-1090. https://doi.org/10.1126/science.adq8918 |
[2] | Chen, L., Wang, Z., Fang, E., Fan, Z. and Song, S. (2025) Probing the Catalytic Degradation of Unsaturated Polyolefin Materials via Fe‐Based Lewis Acids‐Initiated Carbonyl-Olefin Metathesis. Angewandte Chemie International Edition, e202503408. Online ahead of Print. https://doi.org/10.1002/anie.202503408 |
[3] | Chauvin, Y. (2006) Olefinmetathese: Die Frühen Tage (Nobel‐Vortrag). Angewandte Chemie, 118, 3824-3831. https://doi.org/10.1002/ange.200601234 |
[4] | Fustero, S., Simón-Fuentes, A., Barrio, P. and Haufe, G. (2014) Olefin Metathesis Reactions with Fluorinated Substrates, Catalysts, and Solvents. Chemical Reviews, 115, 871-930. https://doi.org/10.1021/cr500182a |
[5] | Zhang, X. (2024) Cyclization Strategies in Carbonyl-Olefin Metathesis: An Up-to-Date Review. Molecules, 29, Article 4861. https://doi.org/10.3390/molecules29204861 |
[6] | Albright, H., Davis, A.J., Gomez-Lopez, J.L., Vonesh, H.L., Quach, P.K., Lambert, T.H., et al. (2021) Carbonyl-Olefin Metathesis. Chemical Reviews, 121, 9359-9406. https://doi.org/10.1021/acs.chemrev.0c01096 |
[7] | Ravindar, L., Lekkala, R., Rakesh, K.P., Asiri, A.M., Marwani, H.M. and Qin, H. (2018) Carbonyl-Olefin Metathesis: A Key Review. Organic Chemistry Frontiers, 5, 1381-1391. https://doi.org/10.1039/c7qo01037k |
[8] | Becker, M. (2018) Carbonyl-Olefin Metathesis for the Synthesis of Cyclic Olefins. Organic Syntheses, 95, 472-485. https://doi.org/10.15227/orgsyn.095.0472 |
[9] | Chakrabortee, S., Kayatekin, C., Newby, G.A., Mendillo, M.L., Lancaster, A. and Lindquist, S. (2016) Luminidependens (LD) Is an Arabidopsis Protein with Prion Behavior. Proceedings of the National Academy of Sciences, 113, 6065-6070. https://doi.org/10.1073/pnas.1604478113 |
[10] | Hennessy, E.T. and Jacobsen, E.N. (2016) A New Metathesis. Nature Chemistry, 8, 741-742. https://doi.org/10.1038/nchem.2581 |
[11] | Ma, L., Li, W., Xi, H., Bai, X., Ma, E., Yan, X., et al. (2016) FeCl3‐Catalyzed Ring‐Closing Carbonyl-Olefin Metathesis. Angewandte Chemie International Edition, 55, 10410-10413. https://doi.org/10.1002/anie.201604349 |
[12] | Riehl, P.S. and Schindler, C.S. (2019) Lewis Acid-Catalyzed Carbonyl-Olefin Metathesis. Trends in Chemistry, 1, 272-273. https://doi.org/10.1016/j.trechm.2019.02.011 |
[13] | Ludwig, J.R., Zimmerman, P.M., Gianino, J.B. and Schindler, C.S. (2016) Iron(III)-Catalysed Carbonyl-Olefin Metathesis. Nature, 533, 374-379. https://doi.org/10.1038/nature17432 |
[14] | Schmalz, H., Soicke, A., Slavov, N. and Neudörfl, J. (2011) Metal-Free Intramolecular Carbonyl-Olefin Metathesis of Ortho-Prenylaryl Ketones. Synlett, 2011, 2487-2490. https://doi.org/10.1055/s-0030-1260320 |
[15] | van Schaik, H., Vijn, R. and Bickelhaupt, F. (1994) Acid‐Catalyzed Olefination of Benzaldehyde. Angewandte Chemie International Edition in English, 33, 1611-1612. https://doi.org/10.1002/anie.199416111 |
[16] | Saá, C. (2016) Iron(III)‐Catalyzed Ring‐Closing Carbonyl-Olefin Metathesis. Angewandte Chemie International Edition, 55, 10960-10961. https://doi.org/10.1002/anie.201606300 |
[17] | Ludwig, J.R., Phan, S., McAtee, C.C., Zimmerman, P.M., Devery, J.J. and Schindler, C.S. (2017) Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction. Journal of the American Chemical Society, 139, 10832-10842. https://doi.org/10.1021/jacs.7b05641 |
[18] | Schneider, C.W. and Devery, J.J. (2025) Theoretical Investigations of Substrate Behavior in FeCl3-Catalyzed Carbonyl-Olefin Metathesis. ACS Omega, 10, 10283-10293. https://doi.org/10.1021/acsomega.4c09880 |
[19] | Groso, E.J., Golonka, A.N., Harding, R.A., Alexander, B.W., Sodano, T.M. and Schindler, C.S. (2018) 3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. ACS Catalysis, 8, 2006-2011. https://doi.org/10.1021/acscatal.7b03769 |
[20] | Ni, S. and Franzén, J. (2018) Carbocation Catalysed Ring Closing Aldehyde-Olefin Metathesis. Chemical Communications, 54, 12982-12985. https://doi.org/10.1039/c8cc06734a |
[21] | Tran, U.P.N., Oss, G., Pace, D.P., Ho, J. and Nguyen, T.V. (2018) Tropylium-Promoted Carbonyl-Olefin Metathesis Reactions. Chemical Science, 9, 5145-5151. https://doi.org/10.1039/c8sc00907d |
[22] | Hanson, C.S., Psaltakis, M.C., Cortes, J.J. and Devery, J.J. (2019) Catalyst Behavior in Metal-Catalyzed Carbonyl-Olefin Metathesis. Journal of the American Chemical Society, 141, 11870-11880. https://doi.org/10.1021/jacs.9b02613 |
[23] | Tran, U.P.N., Oss, G., Breugst, M., Detmar, E., Pace, D.P., Liyanto, K., et al. (2018) Carbonyl-Olefin Metathesis Catalyzed by Molecular Iodine. ACS Catalysis, 9, 912-919. https://doi.org/10.1021/acscatal.8b03769 |
[24] | Wang, R., Chen, Y., Shu, M., Zhao, W., Tao, M., Du, C., et al. (2020) AuCl3‐Catalyzed Ring‐Closing Carbonyl-Olefin Metathesis. Chemistry—A European Journal, 26, 1941-1946. https://doi.org/10.1002/chem.201905199 |
[25] | Djurovic, A., Vayer, M., Li, Z., Guillot, R., Baltaze, J., Gandon, V., et al. (2019) Synthesis of Medium-Sized Carbocycles by Gallium-Catalyzed Tandem Carbonyl-Olefin Metathesis/Transfer Hydrogenation. Organic Letters, 21, 8132-8137. https://doi.org/10.1021/acs.orglett.9b03240 |
[26] | Negishi, E. (1999) Principle of Activation of Electrophiles by Electrophiles through Dimeric Association—Two Are Better than One. Chemistry-A European Journal, 5, 411-420. https://doi.org/10.1002/(sici)1521-3765(19990201)5:2<411::aid-chem411>3.0.co;2-h |
[27] | Olah, G.A. (1993) Superelectrophiles. Angewandte Chemie International Edition in English, 32, 767-788. https://doi.org/10.1002/anie.199307673 |
[28] | Albright, H., Riehl, P.S., McAtee, C.C., Reid, J.P., Ludwig, J.R., Karp, L.A., et al. (2018) Catalytic Carbonyl-Olefin Metathesis of Aliphatic Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles. Journal of the American Chemical Society, 141, 1690-1700. https://doi.org/10.1021/jacs.8b11840 |
[29] | Roth, D., Wadepohl, H. and Greb, L. (2020) Bis(Perchlorocatecholato)Germane: Hard and Soft Lewis Superacid with Unlimited Water Stability. Angewandte Chemie International Edition, 59, 20930-20934. https://doi.org/10.1002/anie.202009736 |
[30] | McAtee, C.C., Nasrallah, D.J., Ryu, H., Gatazka, M.R., McAtee, R.C., Baik, M., et al. (2023) Catalytic, Interrupted Carbonyl-Olefin Metathesis for the Formation of Functionalized Cyclopentadienes. ACS Catalysis, 13, 3036-3043. https://doi.org/10.1021/acscatal.2c05535 |
[31] | Gomez-Lopez, J.L., Davis, A.J., McClure, T.J., Son, M., Steigerwald, D., Watson, R.B., et al. (2024) Bis(Oxazoline) Iron Complexes Enable Tuning of Lewis Acidity for Catalytic Carbonyl-Olefin Metathesis. ACS Catalysis, 15, 601-607. https://doi.org/10.1021/acscatal.3c04684 |
[32] | Huck, F., Catti, L., Reber, G.L. and Tiefenbacher, K. (2021) Expanding the Protecting Group Scope for the Carbonyl Olefin Metathesis Approach to 2,5-Dihydropyrroles. The Journal of Organic Chemistry, 87, 419-428. https://doi.org/10.1021/acs.joc.1c02447 |
[33] | To, T.A., Mai, B.K. and Nguyen, T.V. (2022) Toward Homogeneous Brønsted-Acid-Catalyzed Intramolecular Carbonyl-Olefin Metathesis Reactions. Organic Letters, 24, 7237-7241. https://doi.org/10.1021/acs.orglett.2c03099 |
[34] | Anh To, T., Pei, C., Koenigs, R.M. and Vinh Nguyen, T. (2022) Hydrogen Bonding Networks Enable Brønsted Acid‐catalyzed Carbonyl‐Olefin Metathesis. Angewandte Chemie International Edition, 61, e202117366. https://doi.org/10.1002/anie.202117366 |