全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

联苯类化合物的合成研究进展
Research Progress on the Synthesis of Biphenyl Compounds

DOI: 10.12677/jocr.2025.132021, PP. 206-219

Keywords: 联苯类化合物,偶联反应,环化反应
Biphenyl Compounds
, Coupling Reactions, Cyclization Reaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

联苯类化合物是重要的化工中间体,具有联苯骨架的分子在药物、农用化学品、配体、手性试剂、聚合物和有机材料中都有广泛的应用,因此,此类化合物的合成引起了学术界和工业界的极大兴趣。化学家们发展了许多合成方法,在本文中,首先综述了联苯类化合物的结构特征和应用前景,然后从反应类型对近年来合成联苯类化合物的方法进行了总结和归纳,为此类化合物的合成研究提供借鉴。
Biphenyl compounds are important chemical intermediates, and molecules with a biphenyl skeleton have a wide range of applications in pharmaceuticals, agricultural chemicals, ligands, chiral reagents, polymers, and organic materials. Therefore, the synthesis of such compounds has aroused great interest in both academia and industry. Chemists have developed many synthetic methods. In this article, we first summarize the structural characteristics and application prospects of biphenyl compounds, and then summarize and generalize the methods for synthesizing biphenyl compounds in recent years from the perspective of reaction types, providing reference for the synthesis research of such compounds.

References

[1]  Leroux, F. (2004) Atropisomerism, Biphenyls, and Fluorine: A Comparison of Rotational Barriers and Twist Angles. ChemBioChem, 5, 644-649.
https://doi.org/10.1002/cbic.200300906
[2]  Panda, S.S. and Sharma, N.K. (2023) A New Transient Directing Group Diethoxyethyl-L-Proline Facilitates ortho-Arylation of Aryl-Amines/-Amino Acids via Pd-Catalyzed C(sp2)-h Activation. Organic & Biomolecular Chemistry, 21, 1468-1477.
https://doi.org/10.1039/d2ob02145e
[3]  Vasconcelos, S.N.S., Barbeiro, C.S., Khan, A.N. and Stefani, H.A. (2015) Synthesis of Biphenyl Tyrosine via Cross-Coupling Suzuki-Miyaura Reaction Using Aryltrifluoroborate Salts. Journal of the Brazilian Chemical Society, 26, 765-774.
https://doi.org/10.5935/0103-5053.20150038
[4]  Ehlert, J., Kronemann, J., Zumbrägel, N. and Preller, M. (2019) Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters. Molecules, 24, Article No. 4272.
https://doi.org/10.3390/molecules24234272
[5]  Jain, Z.J., Gide, P.S. and Kankate, R.S. (2017) Biphenyls and Their Derivatives as Synthetically and Pharmacologically Important Aromatic Structural Moieties. Arabian Journal of Chemistry, 10, S2051-S2066.
https://doi.org/10.1016/j.arabjc.2013.07.035
[6]  Yang, J., Giuso, V., Hou, M., Remadna, E., Forté, J., Su, H., et al. (2023) Biphenyl Au(III) Complexes with Phosphine Ancillary Ligands: Synthesis, Optical Properties, and Electroluminescence in Light-Emitting Electrochemical Cells. Inorganic Chemistry, 62, 4903-4921.
https://doi.org/10.1021/acs.inorgchem.2c04293
[7]  Bemis, G.W. and Murcko, M.A. (1996) The Properties of Known Drugs. 1. Molecular Frameworks. Journal of Medicinal Chemistry, 39, 2887-2893.
https://doi.org/10.1021/jm9602928
[8]  Ali, H.A., Ismail, M.A., Fouda, A.E.S. and Ghaith, E.A. (2023) A Fruitful Century for the Scalable Synthesis and Reactions of Biphenyl Derivatives: Applications and Biological Aspects. RSC Advances, 13, 18262-18305.
https://doi.org/10.1039/d3ra03531j
[9]  Bringmann, G., Walter, R. and Weirich, R. (1990) The Directed Synthesis of Biaryl Compounds: Modern Concepts and Strategies. Angewandte Chemie International Edition in English, 29, 977-991.
[10]  Roy, B. and Govindaraju, T. (2023) Enzyme-Mimetic Catalyst Architectures: The Role of Second Coordination Sphere in Catalytic Activity. Bulletin of the Chemical Society of Japan, 97, bcsj-20230224.
https://doi.org/10.1093/bulcsj/bcsj.20230224
[11]  Kwong, H.C., Chidan Kumar, C.S., Mah, S.H., Chia, T.S., Quah, C.K., Loh, Z.H., et al. (2017) Novel Biphenyl Ester Derivatives as Tyrosinase Inhibitors: Synthesis, Crystallographic, Spectral Analysis and Molecular Docking Studies. PLOS ONE, 12, e0170117.
https://doi.org/10.1371/journal.pone.0170117
[12]  Ol’khovik, V.K., Matveienko, Y.V., Vasilevskii, D.A., Kalechits, G.V. and Zheldakova, R.A. (2013) Synthesis, Antimicrobial and Antifungal Activity of Double Quaternary Ammonium Salts of Biphenyls. Russian Journal of General Chemistry, 83, 329-335.
https://doi.org/10.1134/s1070363213020163
[13]  Irshad, M., Jamal, S.B., Faheem, M., Aslam, M., Shafqat, S.S. and Kanwal, A. (2021) In Silico Approach towards the Prediction of Drug-Likeness; Synthesis and in Vitro Evaluation of Biphenyl Derivatives. Russian Journal of General Chemistry, 91, 1084-1092.
https://doi.org/10.1134/s1070363221060153
[14]  Rusu, A., Tanase, C., Pascu, G. and Todoran, N. (2020) Recent Advances Regarding the Therapeutic Potential of Adapalene. Pharmaceuticals, 13, Article No. 217.
https://doi.org/10.3390/ph13090217
[15]  Migden, M., Farberg, A., Dummer, R., Squittieri, N. and Hanke, C.W. (2021) A Review of Hedgehog Inhibitors Sonidegib and Vismodegib for Treatment of Advanced Basal Cell Carcinoma. Journal of Drugs in Dermatology, 20, 156-165.
https://doi.org/10.36849/jdd.5657
[16]  Zhao, Z., Wang, J., Zhang, X., Lin, T., Ren, J. and Pang, W. (2022) Pd Nanoparticles Embedded into MOF808: An Efficient and Reusable Catalyst for Sonogashira and Heck Cross-Coupling Reactions. Tetrahedron Letters, 100, Article ID: 153849.
https://doi.org/10.1016/j.tetlet.2022.153849
[17]  Brocks, D.R. (2006) Drug Disposition in Three Dimensions: An Update on Stereoselectivity in Pharmacokinetics. Biopharmaceutics & Drug Disposition, 27, 387-406.
https://doi.org/10.1002/bdd.517
[18]  Hussain, I., Capricho, J. and Yawer, M.A. (2016) Synthesis of Biaryls via Ligand‐free Suzuki-Miyaura Cross‐Coupling Reactions: A Review of Homogeneous and Heterogeneous Catalytic Developments. Advanced Synthesis & Catalysis, 358, 3320-3349.
https://doi.org/10.1002/adsc.201600354
[19]  Zhu, L., Duquette, J. and Zhang, M. (2003) An Improved Preparation of Arylboronates: Application in One-Pot Suzuki Biaryl Synthesis. The Journal of Organic Chemistry, 68, 3729-3732.
https://doi.org/10.1021/jo0269114
[20]  Tan, X., Zhou, Z.J., Zhang, J.X. and Duan, X.H. (2014) Efficient One‐Pot Cross‐Coupling of Two Aryl Halides by Stannylation/Stille Reaction in Water under Microwave Irradiation. European Journal of Organic Chemistry, 2014, 5153-5157.
https://doi.org/10.1002/ejoc.201402404
[21]  Wang, D., Kawahata, M., Yang, Z., Miyamoto, K., Komagawa, S., Yamaguchi, K., et al. (2016) Stille Coupling via C-N Bond Cleavage. Nature Communications, 7, Article No. 12937.
https://doi.org/10.1038/ncomms12937
[22]  Gavryushin, A., Kofink, C., Manolikakes, G. and Knochel, P. (2005). Efficient Cross-Coupling of Functionalized Aryl-zinc Halides Catalyzed by a Nickel Chloride-Diethyl Phosphite System. Organic Letters, 7, 4871-4874.
https://doi.org/10.1021/ol051615+
[23]  Heravi, M.M., Zadsirjan, V., Hajiabbasi, P. and Hamidi, H. (2019) Advances in Kumada-Tamao-Corriu Cross-Coupling Reaction: An Update. Monatshefte für ChemieChemical Monthly, 150, 535-591.
https://doi.org/10.1007/s00706-019-2364-6
[24]  Kiss, Á., Hell, Z. and Bálint, M. (2010) Nickel/Magnesium-Lanthanum Mixed Oxide Catalyst in the Kumada-Coupling. Organic & Biomolecular Chemistry, 8, 331-335.
https://doi.org/10.1039/B919246H
[25]  Foubelo, F., Nájera, C. and Yus, M. (2016) The Hiyama Cross‐Coupling Reaction: New Discoveries. The Chemical Record, 16, 2521-2533.
https://doi.org/10.1002/tcr.201600063
[26]  Karimi, B., Behzadnia, H. and Vali, H. (2014) Palladium on Ionic Liquid Derived Nanofibrillated Mesoporous Carbon: A Recyclable Catalyst for the Ullmann Homocoupling Reactions of Aryl Halides in Water. ChemCatChem, 6, 745-748.
https://doi.org/10.1002/cctc.201300893
[27]  Karimi, B. and Kabiri Esfahani, F. (2011) Unexpected Golden Ullmann Reaction Catalyzed by Au Nanoparticles Supported on Periodic Mesoporous Organosilica (PMO). Chemical Communications, 47, 10452-10454.
https://doi.org/10.1039/c1cc12566d
[28]  Pachón, L. D., Elsevier, C. J. and Rothenberg, G. (2006) Electroreductive Palladium-Catalysed Ullmann Reactions in Ionic Liquids: Scope and Mechanism. Advanced Synthesis & Catalysis, 348, 1705-1710.
https://doi.org/10.1002/adsc.200606132
[29]  Calò, V., Nacci, A., Monopoli, A. and Cotugno, P. (2009) Palladium‐Nanoparticle-Catalysed Ullmann Reactions in Ionic Liquids with Aldehydes as the Reductants: Scope and Mechanism. ChemistryA European Journal, 15, 1272-1279.
https://doi.org/10.1002/chem.200801621
[30]  Cheng, J., Zhang, G., Du, J., Tang, L., Xu, J. and Li, J. (2011) New Role of Graphene Oxide as Active Hydrogen Donor in the Recyclable Palladium Nanoparticles Catalyzed Ullmann Reaction in Environmental Friendly Ionic Liquid/Supercritical Carbon Dioxide System. Journal of Materials Chemistry, 21, 3485-3494.
[31]  Hla, S.W., Bartels, L., Meyer, G. and Rieder, K.H. (2000) Inducing All Steps of a Chemical Reaction with the Scanning Tunneling Microscope Tip: Towards Single Molecule Engineering. Physical Review Letters, 85, 2777.
[32]  Nasseri, M.A., Rezazadeh, Z., Kazemnejadi, M. and Allahresani, A. (2020) A Co-Cu Bimetallic Magnetic Nanocatalyst with Synergistic and Bifunctional Performance for the Base-Free Suzuki, Sonogashira, and C-N Cross-Coupling Reactions in Water. Dalton Transactions, 49, 10645-10660.
https://doi.org/10.1039/D0DT01846E
[33]  Budén, M.E., Guastavino, J.F. and Rossi, R.A. (2013) Room-Temperature Photoinduced Direct C-H-Arylation via Base-Promoted Homolytic Aromatic Substitution. Organic Letters, 15, 1174-1177.
https://doi.org/10.1021/ol3034687
[34]  Cumine, F., Zhou, S., Tuttle, T. and Murphy, J. A. (2017) A Study of Diketopiperazines as Electron-Donor Initiators in Transition Metal-Free Haloarene-Arene Coupling. Organic & Biomolecular Chemistry, 15, 3324-3336.
https://doi.org/10.1039/C7OB00036G
[35]  Liu, Z., Wang, P., Chen, Y., Yan, Z., Chen, S., Chen, W. and Mu, T. (2020) Small Organic Molecules with Tailored Structures: Initiators in the Transition-Metal-Free C-H Arylation of Unactivated Arenes. RSC advances, 10, 14500-14509.
https://doi.org/10.1039/D0RA01845G
[36]  Chang, M.Y., Chan, C.K., Lin, S.Y. and Wu, M.H. (2013) One-Pot Synthesis of Multifunctionalized M-Terphenyls. Tetrahedron, 69, 9616-9624.
https://doi.org/10.1016/j.tet.2013.09.036
[37]  Satham, L. and Namboothiri, I.N. (2018) (3 + 3) Annulation of Nitroallylic Acetates with Stabilized Sulfur Ylides for the Synthesis of 2-Aryl Terephthalates. The Journal of Organic Chemistry, 83, 9471-9477.
https://doi.org/10.1021/acs.joc.8b00917
[38]  Koike, K. and Ueno, S. (2022) Palladium-Catalyzed Dehydrogenative [3+3] Aromatization of Propyl Ketones and Allyl Carbonates. Chemistry Letters, 51, 489-492.
https://doi.org/10.1246/cl.220032
[39]  Yu, Y.Z., Bai, J., Peng, J.M., Yao, J.S. and Zhuo, C.X. (2023) Modular Access to Meta-Substituted Benzenes via Mo-catalyzed Intermolecular Deoxygenative Benzene Formation. Journal of the American Chemical Society, 145, 8781-8787.
https://doi.org/10.1021/jacs.3c01330
[40]  Narender, T., Sarkar, S., Rajendar, K. and Tiwari, S. (2011) Synthesis of Biaryls via AlCl3 Catalyzed Domino Reaction Involving Cyclization, Dehydration, and Oxidation. Organic Letters, 13, 6140-6143.
https://doi.org/10.1021/ol202638m
[41]  Chang, M., Cheng, Y. and Lu, Y. (2015) Synthesis of Substituted Benzenes via Bi(OTf)3-Mediated Intramolecular Carbonyl Allylation of α-Prenyl or α-Geranyl β-Arylketosulfones. Organic Letters, 17, 3142-3145.
https://doi.org/10.1021/acs.orglett.5b01461

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133