|
TPM在胶体化学中的应用
|
Abstract:
TPM是一种带有双键的有机硅烷。不同于一般的有机硅烷,TPM具有独特的自发乳化现象。近年来,利用TPM的自发乳化现象和双键,人们设计制备了多种具有复杂形貌的胶体粒子。本文综述了基于TPM复杂胶体的合成策略,选取了一些实例来说明复杂形貌的形成机理。并且简要讨论了这些胶体粒子的应用和未来发展。
TPM is an organosilane with double bonds. TPM has unique spontaneous emulsification phenomenon, which is different from ordinary organosilane. In recent years, a variety of colloidal particles with complex morphology have been designed and prepared by using the spontaneous emulsification and double bond of TPM. In this paper, the synthesis strategies of TPM based complex colloids are reviewed, and some examples are selected to illustrate the formation mechanism of complex morphology. The application and future development of these colloidal particles are briefly discussed.
[1] | Sacanna, S., Kegel, W.K. and Philipse, A.P. (2007) Thermodynamically Stable Pickering Emulsions. Physical Review Letters, 98, Article 158301. https://doi.org/10.1103/PhysRevLett.98.158301. |
[2] | Sacanna, S., Irvine, W. T.M., Rossi, L. and Pine, D.J. (2011) Lock and Key Colloids through Polymerization-Induced Buckling of Monodisperse Silicon Oil Droplets. Soft Matter, 7, 1631-1634. https://doi.org/10.1039/C0SM01125H. |
[3] | van der Wel, C., Bhan, R.K., Verweij, R.W., Frijters, H.C., Gong, Z., Hollingsworth, A.D., Sacanna, S. and Kraft, D.J. (2017) Preparation of Colloidal Organosilica Spheres through Spontaneous Emulsification. Langmuir, 33, 8174-8180. https://doi.org/10.1021/acs.langmuir.7b01398 |
[4] | Sacanna, S., Rossi, L. and Pine, D.J. (2012) Magnetic Click Colloidal Assembly. Journal of the American Chemical Society, 134, 6112-6115. https://doi.org/10.1021/ja301344n. |
[5] | Sacanna, S., Korpics, M., Rodriguez, K., Colón-Meléndez, L., Kim, S., Pine, D.J., et al. (2013) Shaping Colloids for Self-assembly. Nature Communications, 4, Article No. 1688. https://doi.org/10.1038/ncomms2694 |
[6] | Kamp, M., De Nijs, B., Baumberg, J.J. and Scherman, O.A. (2021) Contact Angle as a Powerful Tool in Anisotropic Colloid Synthesis. Journal of Colloid and Interface Science, 581, 417-426. https://doi.org/10.1016/j.jcis.2020.07.074. |
[7] | Middleton, C., Hannel, M.D., Hollingsworth, A.D., Pine, D.J. and Grier, D.G. (2019) Optimizing the Synthesis of Monodisperse Colloidal Spheres Using Holographic Particle Characterization. Langmuir, 35, 6602-6609. https://doi.org/10.1021/acs.langmuir.9b00012. |
[8] | Abdelaziz, M.A., Díaz A., J.A., Aider, J., Pine, D.J., Grier, D.G. and Hoyos, M. (2021) Ultrasonic Chaining of Emulsion Droplets. Physical Review Research, 3, Article 043157. https://doi.org/10.1103/physrevresearch.3.043157 |
[9] | Crothers, R.A., Orr, N.H.P., Van Der Meer, B., Dullens, R.P.A. and Yanagishima, T. (2023) Characterization and Optimization of Fluorescent Organosilica Colloids for 3D Confocal Microscopy Prepared Under “Zero-Flow” Conditions. Langmuir, 39, 5306-5314. https://doi.org/10.1021/acs.langmuir.2c03306 |
[10] | Diaz A., J.A., Oh, J.S., Yi, G.-R. and Pine, D.J. (2020) Photo-Printing of Faceted DNA Patchy Particles. Proceedings of the National Academy of Sciences of the United States of America, 117, 10645-10653. https://doi.org/10.1073/pnas.1918504117. |
[11] | Sacanna, S. and Philipse, A.P.A (2007) Generic Single‐Step Synthesis of Monodisperse Core/Shell Colloids Based on Spontaneous Pickering Emulsification. Advanced Materials, 19, 3824-3826. https://doi.org/10.1002/adma.200700865. |
[12] | Liu, Y., Edmond, K.V., Curran, A., Bryant, C., Peng, B., Aarts, D.G.A.L., Sacanna, S. and Dullens, R.P.A. (2016) Core-Shell Particles for Simultaneous 3D Imaging and Optical Tweezing in Dense Colloidal Materials. Advanced Materials, 28, 8001-8006. https://doi.org/10.1002/adma.201602137 |
[13] | Kadowaki, K., Ishii, H., Nagao, D. and Konno, M. (2016) Imprinting Dimples on Narrowly Dispersed Polymeric Spheres by Heterocoagulation between Hard Polymer Particles and Soft Oil Droplets. Langmuir, 32, 11600-11605. |
[14] | Weijgertze, H.M.H., Kegel, W.K. and Zanini, M. (2020) Patchy Rough Colloids as Pickering Stabilizers. Soft Matter, 16, 8002-8012. https://doi.org/10.1039/D0SM00807A. |
[15] | Chang, F., Ouhajji, S., Townsend, A., Sanogo Lacina, K., van Ravensteijn, B.G.P. and Kegel, W.K. (2021) Controllable Synthesis of Patchy Particles with Tunable Geometry and Orthogonal Chemistry. Journal of Colloid and Interface Science, 582, 333-341. https://doi.org/10.1016/j.jcis.2020.08.038 |
[16] | Liu, M., Dong, F., Jackson, N.S., Ward, M.D. and Weck, M. (2020) Customized Chiral Colloids. Journal of the American Chemical Society, 142, 16528-16532. https://doi.org/10.1021/jacs.0c07315 |
[17] | Xu, Z., Hueckel, T., Irvine, W.T.M. and Sacanna, S. (2023) Caged Colloids. Chemistry of Materials, 35, 6357-6363. https://doi.org/10.1021/acs.chemmater.3c01053 |
[18] | Mori, H. (2012) Design and Synthesis of Functional Silsesquioxane-Based Hybrids by Hydrolytic Condensation of Bulky Triethoxysilanes. International Journal of Polymer Science, 2012, Article 173624. https://doi.org/10.1155/2012/173624 |
[19] | Pantoja, M., Velasco, F., Broekema, D., Abenojar, J. and del Real, J.C. (2010) The Influence of pH on the Hydrolysis Process of γ-Methacryloxypropyltrimethoxysilane, Analyzed by FT-IR, and the Silanization of Electrogalvanized Steel. Journal of Adhesion Science and Technology, 24, 1131-1143. https://doi.org/10.1163/016942409x12586283821559 |
[20] | Tunstall-Garcia, H., Charles, B.L. and Evans, R.C. (2021) The Role of Polyhedral Oligomeric Silsesquioxanes in Optical Applications. Advanced Photonics Research, 2, Article 2000196. https://doi.org/10.1002/adpr.202000196 |
[21] | Hah, H.J., Kim, J.S., Jeon, B.J., Koo, S.M. and Lee, Y.E. (2003) Simple Preparation of Monodisperse Hollow Silica Particles Without Using Templates. ChemInform, 34, 1712-1713. https://doi.org/10.1002/chin.200340237 |
[22] | Neibloom, D., Bevan, M.A. and Frechette, J. (2019) Surfactant-Stabilized Spontaneous 3-(Trimethoxysilyl) Propyl Methacrylate Nanoemulsions. Langmuir, 36, 284-292. https://doi.org/10.1021/acs.langmuir.9b03412 |
[23] | Chiu, S., Wang, S., Chou, H., Liu, Y. and Hu, T. (2014) Versatile Synthesis of Thiol-and Amine-Bifunctionalized Silica Nanoparticles Based on the Ouzo Effect. Langmuir, 30, 7676-7686. https://doi.org/10.1021/la501571u |
[24] | Obey, T.M. and Vincent, B. (1994) Novel Monodisperse “Silicone Oil”/Water Emulsions. Journal of Colloid and Interface Science, 163, 454-463. https://doi.org/10.1006/jcis.1994.1124 |
[25] | Anderson, K.R., Obey, T.M. and Vincent, B. (1994) Surfactant-Stabilized Silicone Oil in Water Emulsions. Langmuir, 10, 2493-2494. https://doi.org/10.1021/la00019a078 |
[26] | Neibloom, D., Bevan, M.A. and Frechette, J. (2021) Droplet Formation and Growth Mechanisms in Reaction-Induced Spontaneous Emulsification of 3-(Trimethoxysilyl) Propyl Methacrylate. Langmuir, 37, 11625-11636. https://doi.org/10.1021/acs.langmuir.1c02048 |
[27] | Wang, Y., Wang, Y., Zheng, X., Yi, G., Sacanna, S., Pine, D.J., et al. (2014) Three-Dimensional Lock and Key Colloids. Journal of the American Chemical Society, 136, 6866-6869. https://doi.org/10.1021/ja502699p |
[28] | Gong, Z., Hueckel, T., Yi, G. and Sacanna, S. (2017) Patchy Particles Made by Colloidal Fusion. Nature, 550, 234-238. https://doi.org/10.1038/nature23901 |
[29] | Wang, Y., McGinley, J.T. and Crocker, J.C. (2017) Dimpled Polyhedral Colloids Formed by Colloidal Crystal Templating. Langmuir, 33, 3080-3087. https://doi.org/10.1021/acs.langmuir.7b00202 |
[30] | Shillingford, C., Kim, B.M. and Weck, M. (2021) Top-down Heterogeneous Colloidal Engineering Using Capillary Assembly of Liquid Particles. ACS Nano, 15, 1640-1651. https://doi.org/10.1021/acsnano.0c09246 |
[31] | Oh, J.S., Lee, S., Glotzer, S.C., Yi, G.-R. and Pine, D.J. (2019) Colloidal Fibers and Rings by Cooperative Assembly. Nature Communications, 10, Article No. 3936. https://doi.org/10.1038/s41467-019-11915-1. |
[32] | Edmond, K.V., Jacobson, T.W.P., Oh, J.S. and Yi, G.-R. (2021) Large-Scale Synthesis of Colloidal Bowl-Shaped Particles. Soft Matter, 17, 6176-6181. https://doi.org/10.1039/D0SM00793E |
[33] | Mani, E., Sanz, E., Roy, S., Dijkstra, M., Groenewold, J. and Kegel, W.K. (2012) Sheet-Like Assemblies of Spherical Particles with Point-Symmetrical Patches. The Journal of Chemical Physics, 136, Article 144706. |
[34] | Noya, E.G., Zubieta, I., Pine, D.J. and Sciortino, F. (2019) Assembly of Clathrates from Tetrahedral Patchy Colloids with Narrow Patches. The Journal of Chemical Physics, 151, Article 094502. https://doi.org/10.1063/1.5109382. |
[35] | He, M., Gales, J.P., Shen, X., Kim, M.J. and Pine, D.J. (2021) Colloidal Particles with Triangular Patches. Langmuir, 37, 7246-7253. https://doi.org/10.1021/acs.langmuir.1c00877. |
[36] | Youssef, M., Hueckel, T., Yi, G.-R. and Sacanna, S. (2016) Shape-Shifting Colloids via Stimulated Dewetting. Nature Communications, 7, Article No. 12216. https://doi.org/10.1038/ncomms12216. |
[37] | Shah, Z.H., Xu, X., Wang, S., Li, Y., Chen, Y., Shan, H. and Gao, Y. (2019) Synthesis of Two-Patch Particles with Controlled Patch Size via Nonequilibrium Solidification of Droplets on Rods. Polymer, 177, 91-96. https://doi.org/10.1016/j.polymer.2019.05.073 |
[38] | Tu, F. and Lee, D. (2014) Shape-Changing and Amphiphilicity-Reversing Janus Particles with pH-Responsive Surfactant Properties. Journal of the American Chemical Society, 136, 9999-10006. https://doi.org/10.1021/ja503189r. |
[39] | Klinger, D., Wang, C.X., Connal, L.A., Audus, D.J., Jang, S.G., Kraemer, S., Killops, K.L., Fredrickson, G.H., Kramer, E.J. and Hawker, C.J. (2014) A Facile Synthesis of Dynamic, Shape‐Changing Polymer Particles. Angewandte Chemie International Edition, 53, 7018-7022. https://doi.org/10.1002/anie.201400183 |
[40] | Gonzalez Ortiz, D., Pochat-Bohatier, C., Cambedouzou, J., Bechelany, M. and Miele, P. (2020) Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering, 6, 468-482. https://doi.org/10.1016/j.eng.2019.08.017 |
[41] | Dekker, R.I., Velandia, S.F., Kibbelaar, H.V.M., Morcy, A., Sadtler, V., Roques-Carmes, T., Groenewold, J., Kegel, W.K., Velikov, K.P. and Bonn, D. (2023) Is There a Difference between Surfactant-Stabilised and Pickering Emulsions? Soft Matter, 19, 1941-1951. https://doi.org/10.1039/D2SM01375D |
[42] | Kegel, W.K. and Groenewold, J. (2009) Scenario for Equilibrium Solid-Stabilized Emulsions. Physical Review E, 80, Article 030401. https://doi.org/10.1103/PhysRevE.80.030401. |
[43] | Hasnain, J., Jiang, Y., Hou, H., Yan, J., Athanasopoulou, L., Forth, J., Ashby, P.D., Helms, B.A., Russell, T.P. and Geis-sler, P.L. (2020) Spontaneous Emulsification Induced by Nanoparticle Surfactants. The Journal of Chemical Physics, 153, Article 224705. https://doi.org/10.1063/5.0029016 |
[44] | Wu, H., Du, X., Meng, X., Qiu, D. and Qiao, Y. (2021) A Three-Tiered Colloidosomal Microreactor for Continuous Flow Catalysis. Nature Communications, 12, Article No. 6113. https://doi.org/10.1038/s41467-021-26381-x |
[45] | Peng, B., Liu, Y., Aarts, D. G.A.L. and Dullens, R.P.A. (2021) Stabilisation of Hollow Colloidal TiO2 Particles by Partial Coating with Evenly Distributed Lobes. Soft Matter, 17, 1480-1486. https://doi.org/10.1039/D0SM02100H. |
[46] | Ebbens, S.J. (2016) Active Colloids: Progress and Challenges Towards Realising Autonomous Applications. Current Opinion in Colloid & Interface Science, 21, 14-23. https://doi.org/10.1016/j.cocis.2015.10.003 |
[47] | Notingher, I., Verrier, S., Romanska, H., Bishop, A.E., Polak, J.M. and Hench, L.L. (2002) In Situ Characterisation of Living Cells by Raman Spectroscopy. Journal of Spectroscopy, 16, 43-51. https://doi.org/10.1155/2002/408381 |
[48] | Shah, Z.H., Wang, S., Xian, L., Zhou, X., Chen, Y., Lin, G., et al. (2020) Highly Efficient Chemically-Driven Micromotors with Controlled Snowman-Like Morphology. Chemical Communications, 56, 15301-15304. https://doi.org/10.1039/d0cc06812h |
[49] | Palacci, J., Sacanna, S., Steinberg, A.P., Pine, D.J. and Chaikin, P.M. (2013) Living Crystals of Light-Activated Colloidal Surfers. Science, 339, 936-940. https://doi.org/10.1126/science.1230020 |
[50] | Zhu, J., Wang, H. and Zhang, Z. (2021) Shape-Tunable Janus Micromotors via Surfactant-Induced Dewetting. Langmuir, 37, 4964-4970. https://doi.org/10.1021/acs.langmuir.1c00340 |
[51] | Ikram, M., Hu, F., Peng, G., Basharat, M., Jabeen, N., Pan, K., et al. (2021) Light-Activated Fuel-Free Janus Metal Organic Framework Colloidal Motors for the Removal of Heavy Metal Ions. ACS Applied Materials & Interfaces, 13, 51799-51806. https://doi.org/10.1021/acsami.1c16902 |
[52] | Shah, Z.H., Sockolich, M., Rivas, D. and Das, S. (2023) Fabrication and Open-Loop Control of Three-Lobed Nonspherical Janus Microrobots. MRS Advances, 8, 1028-1032. https://doi.org/10.1557/s43580-023-00598-y |
[53] | He, M., Gales, J.P., Ducrot, É., Gong, Z., Yi, G., Sacanna, S., et al. (2020) Colloidal Diamond. Nature, 585, 524-529. https://doi.org/10.1038/s41586-020-2718-6 |
[54] | Ren, G., Wang, W., Shang, M., Zou, H. and Cheng, S. (2015) Using a Macroporous Silver Shell to Coat Sulfonic Acid Group-Functionalized Silica Spheres and Their Applications in Catalysis and Surface-Enhanced Raman Scattering. Langmuir, 31, 10517-10523. https://doi.org/10.1021/acs.langmuir.5b02218 |
[55] | Hu, H., Ji, F., Xu, Y., Yu, J., Liu, Q., Chen, L., et al. (2016) Reversible and Precise Self-Assembly of Janus Metal-Organosilica Nanoparticles through a Linker-Free Approach. ACS Nano, 10, 7323-7330. https://doi.org/10.1021/acsnano.6b03396 |
[56] | Grober, D., Palaia, I., Uçar, M.C., Hannezo, E., Šarić, A. and Palacci, J. (2023) Unconventional Colloidal Aggregation in Chiral Bacterial Baths. Nature Physics, 19, 1680-1688. https://doi.org/10.1038/s41567-023-02136-x |
[57] | Xu, Z., Hueckel, T., Irvine, W.T.M. and Sacanna, S. (2021) Transmembrane Transport in Inorganic Colloidal Cell-Mimics. Nature, 597, 220-224. https://doi.org/10.1038/s41586-021-03774-y |