全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种咔唑基苯丙烯腈类水相人工光捕获体系
A Carbazolylphenylacrylonitrile Derivative-Based Aqueous Artificial Light-Harvesting System

DOI: 10.12677/jocr.2025.132017, PP. 167-173

Keywords: 人工光捕获,超分子组装,主–客体作用,能量转移
Artificial Light-Harvesting
, Supramolecular Assembly, Host-Guest Interaction, Energy Transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究基于主客体识别作用构建了一种新型水相光捕获系统。通过水溶性羧酸盐柱[5]芳烃(WCP[5])与咔唑基苯基丙烯腈衍生物(CPTD)在水相中的超分子组装作用,成功制备了具有荧光特性的纳米组装体(WCP[5]-CPTD)。该纳米结构通过包覆能量受体磺酰罗丹明B(SRB),实现了WCP[5]-CPTD-SRB三元光能捕获体系的构筑。实验数据显示,在供受体摩尔配比优化至125:1的条件下,体系展现出显著的能量传递性能,其能量转移效率提升至61.4%,同时获得11.3的天线效应增益值。这一基于超分子组装策略构建的水相光捕获体系,为开发高效水相人工光合系统提供了创新性研究范式。
This study developed a novel aqueous light-harvesting system based on host-guest molecular recognition. By using the supramolecular assembly between water-soluble carboxylate-pillar[5]arene (WCP[5]) and a carbazolylphenylacrylonitrile derivative (CPTD) in aqueous media, fluorescent nanoassemblies (WCP[5]-CPTD) were successfully constructed. This nanostructure was further functionalized by encapsulating the energy acceptor sulforhodamine B (SRB), establishing a ternary WCP[5]-CPTD-SRB light-harvesting system. Experimental results demonstrated that the system achieved remarkable energy transfer performance, with energy transfer efficiency reaching 61.4% and an antenna effect of 11.3 at an optimized donor-acceptor molar ratio of 125:1. This supramolecular assembly-driving aqueous-phase light-harvesting platform presented an innovative research paradigm for developing efficient artificial photosynthetic systems.

References

[1]  El-Khouly, M.E., El-Mohsnawy, E. and Fukuzumi, S. (2017) Solar Energy Conversion: From Natural to Artificial Photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 36-83.
https://doi.org/10.1016/j.jphotochemrev.2017.02.001
[2]  Schulze, M., Kunz, V., Frischmann, P.D. and Würthner, F. (2016) A Supramolecular Ruthenium Macrocycle with High Catalytic Activity for Water Oxidation That Mechanistically Mimics Photosystem II. Nature Chemistry, 8, 576-583.
https://doi.org/10.1038/nchem.2503
[3]  Zhong, K., Pang, W., Yang, Z., Bian, S. and Xu, N. (2025) Pillar[5]arene-Based Supramolecular Assemblies Application in Artificial Light-Harvesting Systems. RSC Advances, 15, 11308-11318.
https://doi.org/10.1039/d5ra00882d
[4]  Li, J., Chen, Y., Yu, J., Cheng, N. and Liu, Y. (2017) A Supramolecular Artificial Light-Harvesting System with an Ultrahigh Antenna Effect. Advanced Materials, 29, Article 1701905.
https://doi.org/10.1002/adma.201701905
[5]  Hao, M., Sun, G., Zuo, M., Xu, Z., Chen, Y., Hu, X., et al. (2019) A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis. Angewandte Chemie International Edition, 59, 10095-10100.
https://doi.org/10.1002/anie.201912654
[6]  Ma, C., Wang, Y., Han, N., Zhang, R., Liu, H., Sun, X., et al. (2024) Carbon Dot-Based Artificial Light-Harvesting Systems with Sequential Energy Transfer and White Light Emission for Photocatalysis. Chinese Chemical Letters, 35, Article 108632.
https://doi.org/10.1016/j.cclet.2023.108632
[7]  Wang, K., Velmurugan, K., Li, B. and Hu, X. (2021) Artificial Light-Harvesting Systems Based on Macrocycle-Assisted Supramolecular Assembly in Aqueous Media. Chemical Communications, 57, 13641-13654.
https://doi.org/10.1039/d1cc06011b
[8]  Sun, G., Li, M., Cai, L., Zhu, J., Tang, Y. and Yao, Y. (2024) Carbazole-Based Artificial Light-Harvesting System for Photocatalytic Cross-Coupling Dehydrogenation Reaction. Chemical Communications, 60, 1412-1415.
https://doi.org/10.1039/d3cc05405e
[9]  Li, M., Wang, R., Xia, Y., Fu, Y., Wu, L., Sun, G., et al. (2025) Bis-Naphthylacrylonitrile‐Based Supramolecular Artificial Light‐Harvesting System for White Light Emission. Macromolecular Rapid Communications, 46, Article 2400929.
https://doi.org/10.1002/marc.202400929
[10]  Jiao, J., Sun, G., Zhang, J., Lin, C., Jiang, J. and Wang, L. (2021) The Preparation of a Water-Soluble Phospholate-Based Macrocycle for Constructing Artificial Light-Harvesting Systems. ChemistryA European Journal, 27, 16601-16605.
https://doi.org/10.1002/chem.202102758
[11]  Luo, Y., Zhang, W., Ren, Q., Tao, Z. and Xiao, X. (2022) Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]uril. ACS Applied Materials & Interfaces, 14, 29806-29812.
https://doi.org/10.1021/acsami.2c05599
[12]  Sun, G., Li, M., Li, J., Feng, J., Yan, Z., Sun, Y., et al. (2025) Enhanced Emission in a Supramolecular Artificial Light-Harvesting System for a Photocatalytic Thiol-Ene Reaction. Chemical Communications, 61, 6360-6363.
https://doi.org/10.1039/d5cc00339c

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133