全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

液相扩散系数测量方法研究进展
Research Progress on Measurement Methods of Liquid Diffusion Coefficient

DOI: 10.12677/ijfd.2025.132011, PP. 115-125

Keywords: 液相扩散系数,光干涉法,动态光散射法,荧光相关光谱法,核磁共振扩散序谱法
Liquid Diffusion Coefficient
, Optical Interference Method, Dynamic Light Scattering Method, Fluorescence Correlation Spectroscopy Method, Diffusion-Ordered NMR Spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

液相扩散系数是描述不同溶液扩散过程的基础性数据,其大小与物质的结构和溶质的浓度紧密相关。液相扩散系数的测量对于众多应用领域具有十分重要的研究价值。传统测量液相扩散系数的方法分别存在测量时间久、精度低或耗时长等问题。近年来,得益于光学、光(波)谱学技术的日益成熟,液相扩散系数的测量方法发展迅速,不断朝着精确、灵敏、快速的方向发展。本文对光干涉法、动态光散射法、荧光相关光谱法、核磁共振扩散序谱法这四种基于光学、光(波)谱学的测量液相扩散系数方法的原理、特点及最新应用进展进行了综述与比较,为液相扩散系数测量方法的发展提供参考。
The liquid diffusion coefficient is the fundamental data for depicting the diffusion process of various solutions, and its magnitude is closely associated with the structure of the substance and the concentration of the solute. The measurement of liquid diffusion coefficient holds significant research value in numerous application fields. However, the traditional approaches for measuring liquid diffusion coefficient have certain issues, such as lengthy measurement duration, low accuracy or extended time requirements. In recent years, thanks to the increasingly mature technology of optics and optical (wave) spectroscopy, the measurement method of liquid diffusion coefficient has advanced rapidly and has been evolving towards the direction of accuracy, sensitivity and rapidity. In this paper, the principles, characteristics, and recent applications of four methods based on optical and optical (wave) spectroscopy for measuring liquid-phase diffusion coefficient, namely optical interferometry, dynamic light scattering, fluorescence correlation spectroscopy, and nuclear magnetic resonance diffusion sequence spectrometry, are reviewed and compared, providing a reference for the development of liquid diffusion coefficient measurement methods.

References

[1]  Wynne, A.C., Abbott, B.S., Niazi, R., Foley, K. and Walters, K.B. (2024) Experimental and Modeling Approaches to Determine Drug Diffusion Coefficients in Artificial Mucus. Heliyon, 10, e38638.
https://doi.org/10.1016/j.heliyon.2024.e38638
[2]  Basilio, E., Addassi, M., Al-Juaied, M., Hassanizadeh, S.M. and Hoteit, H. (2024) Improved Pressure Decay Method for Measuring CO2-Water Diffusion Coefficient without Convection Interference. Advances in Water Resources, 183, Article ID: 104608.
https://doi.org/10.1016/j.advwatres.2023.104608
[3]  Salmi, T., Flory, T., Perez Sena, W., Eränen, K., Schmidt, C. and Wärnå, J. (2024) Determination of Effective Liquid-Phase Diffusion Coefficients by Tracer Method in Continuous Packed Columns. Chemical Engineering Science, 296, Article ID: 120239.
https://doi.org/10.1016/j.ces.2024.120239
[4]  杨楠, 刘雅晴, 孙丽存. 基于液芯柱透镜测量L-丝氨酸液相扩散系数[J]. 激光与光电子学进展, 2025, 62(5): 167-174.
[5]  Toriumi, M., Katooka, R., Yui, K., Funazukuri, T., Kong, C.Y. and Kagei, S. (2010) Measurements of Binary Diffusion Coefficients for Metal Complexes in Organic Solvents by the Taylor Dispersion Method. Fluid Phase Equilibria, 297, 62-66.
https://doi.org/10.1016/j.fluid.2010.06.003
[6]  Huang, Y., Wu, C., Chen, Y., Chou, I. and Jiang, L. (2022) Measurement of Diffusion Coefficients of Hydrogen Sulfide in Water and Brine Using In-Situ Raman Spectroscopy. Fluid Phase Equilibria, 556, Article ID: 113381.
https://doi.org/10.1016/j.fluid.2022.113381
[7]  Silveira, A., Kardjilov, N., Markötter, H., Longo, E., Greving, I., Lasch, P., et al. (2022) Water Flow through Bone: Neutron Tomography Reveals Differences in Water Permeability between Osteocytic and Anosteocytic Bone Material. Materials & Design, 224, Article ID: 111275.
https://doi.org/10.1016/j.matdes.2022.111275
[8]  Wang, R., Meng, W., Zhang, Y., Li, D. and Pu, X. (2022) An Improved Method for Measuring the Concentration Dependence of Fick Diffusion Coefficient Based on Boltzmann Equation and Cylindrical Liquid-Core Lenses. International Communications in Heat and Mass Transfer, 138, Article ID: 106391.
https://doi.org/10.1016/j.icheatmasstransfer.2022.106391
[9]  Longsworth, L.G. (1952) Diffusion Measurements, at 1˚, of Aqueous Solutions of Amino Acids, Peptides and Sugars. Journal of the American Chemical Society, 74, 4155-4159.
https://doi.org/10.1021/ja01136a059
[10]  Becsey, J.G., Jackson, N.R. and Bierlein, J.A. (1971) Hologram Interferometry for Isothermal Diffusion Measurements. The Journal of Physical Chemistry, 75, 3374-3376.
https://doi.org/10.1021/j100690a030
[11]  Anand, A., Chhaniwal, V.K. and Narayanamurthy, C.S. (2006) Diffusivity Studies of Transparent Liquid Solutions by Use of Digital Holographic Interferometry. Applied Optics, 45, 904-909.
https://doi.org/10.1364/ao.45.000904
[12]  Su, Y., Jia, W., Chen, J., Cao, S., He, M. and Zhang, Y. (2024) A Novel Measurement Method for Measuring the Concentration-Dependent Mutual Diffusion Coefficients Based on Finite Volume Method. The Journal of Chemical Thermodynamics, 189, Article ID: 107208.
https://doi.org/10.1016/j.jct.2023.107208
[13]  Eder, C. and Briesen, H. (2022) Interferometric Probing of Physical and Chemical Properties of Solutions: Noncontact Investigation of Liquids. Annual Review of Chemical and Biomolecular Engineering, 13, 99-121.
https://doi.org/10.1146/annurev-chembioeng-092220-123822
[14]  Li, C., Liu, W., Peng, X., Shao, L. and Feng, S. (2019) Measurement of Mass Diffusion Coefficients of O2 in Aviation Fuel through Digital Holographic Interferometry. Chinese Journal of Aeronautics, 32, 1184-1189.
https://doi.org/10.1016/j.cja.2019.01.012
[15]  Chikode, P.P., Sabale, S.R., Vhatkar, R.S. and Fulari, V.J. (2021) Determination of the Diffusion Coefficient of Urea Solution Using Double Exposure Digital Holographic Interferometry (DEDHI) to Study Plant Growth. Optics and Spectroscopy, 129, 303-308.
https://doi.org/10.1134/s0030400x2103005x
[16]  Gomes, D.C., Geraldes, V., Fegley, D. and Rodrigues, M.A. (2021) Mutual Diffusion of Proteins in Cold Concentration Gradients Measured by Holographic Interferometry. Chemical Engineering Science, 236, Article ID: 116478.
https://doi.org/10.1016/j.ces.2021.116478
[17]  Jia, W., Su, Y., Cao, S., Dong, A., Zhang, Y. and He, M. (2023) Mutual Diffusion Coefficients of Three Alkanes (N-Heptane, N-Octane and Isooctane) in Cyclohexane from 288.15 K to 308.15 K. The Journal of Chemical Thermodynamics, 184, Article ID: 107086.
https://doi.org/10.1016/j.jct.2023.107086
[18]  Zhang, H., Zhan, T., Chen, J., Li, X., Zhang, Y. and He, M. (2022) Speed of Sound Measurement and Mixing-Rule Evaluation of (N-Butanol + N-Heptane) Binary Mixtures. The Journal of Chemical Thermodynamics, 172, Article ID: 106817.
https://doi.org/10.1016/j.jct.2022.106817
[19]  Okino, T. (2013) Ending of Darken Equation and Intrinsic Diffusion Concept. Journal of Modern Physics, 4, 1495-1498.
https://doi.org/10.4236/jmp.2013.411180
[20]  Vignes, A. (1966) Diffusion in Binary Solutions. Variation of Diffusion Coefficient with Composition. Industrial & Engineering Chemistry Fundamentals, 5, 189-199.
https://doi.org/10.1021/i160018a007
[21]  Rives, R., Salavera, D., Campos, J. and Coronas, A. (2022) Development of Optical Digital Interferometry for Visualizing and Modelling the Mass Diffusion of Ammonia in Water in an Absorption Process. Experimental Thermal and Fluid Science, 130, Article ID: 110509.
https://doi.org/10.1016/j.expthermflusci.2021.110509
[22]  Feng, X., Huang, G., Qiu, J., Peng, L., Luo, K., Liu, D., et al. (2023) Dynamic Light Scattering in Flowing Dispersion. Optics Communications, 531, Article ID: 129225.
https://doi.org/10.1016/j.optcom.2022.129225
[23]  Einstein, A. (1910) Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Annalen der Physik, 338, 1275-1298.
https://doi.org/10.1002/andp.19103381612
[24]  Forrester, A.T., Gudmundsen, R.A. and Johnson, P.O. (1955) Photoelectric Mixing of Incoherent Light. Physical Review, 99, 1691-1700.
https://doi.org/10.1103/physrev.99.1691
[25]  Courtial, X., Valtz, A., Chabab, S., Coquelet, C. and Arpentinier, P. (2022) Isothermal P, X, Y Data for the Nitrogen + Carbon Monoxide System at Five Temperatures from 100 to 130 K and Pressures up to 3.4 MPa. Fluid Phase Equilibria, 559, Article ID: 113476.
https://doi.org/10.1016/j.fluid.2022.113476
[26]  Kankanamge, C.J., Zhan, T., Piszko, M., Klein, T. and Fröba, A.P. (2023) Diffusion Coefficients in Binary Electrolyte Mixtures by Dynamic Light Scattering and Molecular Dynamics Simulations. Electrochimica Acta, 462, Article ID: 142637.
https://doi.org/10.1016/j.electacta.2023.142637
[27]  Ye, Y., Huo, X. and Yin, Z. (2021) Protein-Protein Interactions at High Concentrations: Effects of ArgHCL and NaCl on the Stability, Viscosity and Aggregation Mechanisms of Protein Solution. International Journal of Pharmaceutics, 601, Article ID: 120535.
https://doi.org/10.1016/j.ijpharm.2021.120535
[28]  Parada, R., Campbell, E.B., Sandoval, D.F. and Cistola, D.P. (2023) Insulin Resistance as Monitored by Dynamic Light Scattering of Whole Human Serum: An Ancillary Study of Premier. Metabolism, 142, Article ID: 155495.
https://doi.org/10.1016/j.metabol.2023.155495
[29]  Winzor, D.J., Dinu, V., Scott, D.J. and Harding, S.E. (2023) Retrospective Rationalization of Disparities between the Concentration Dependence of Diffusion Coefficients Obtained by Boundary Spreading and Dynamic Light Scattering. European Biophysics Journal, 52, 333-342.
https://doi.org/10.1007/s00249-023-01664-x
[30]  Magde, D., Elson, E. and Webb, W.W. (1972) Thermodynamic Fluctuations in a Reacting System—Measurement by Fluorescence Correlation Spectroscopy. Physical Review Letters, 29, 705-708.
https://doi.org/10.1103/physrevlett.29.705
[31]  Rigler, R., Mets, Ü., Widengren, J. and Kask, P. (1993) Fluorescence Correlation Spectroscopy with High Count Rate and Low Background: Analysis of Translational Diffusion. European Biophysics Journal, 22, 169-175.
https://doi.org/10.1007/bf00185777
[32]  Jiang, Y., Xu, B., Melnykov, A., Genin, G.M. and Elson, E.L. (2020) Fluorescence Correlation Spectroscopy and Photon Counting Histograms in Finite, Bounded Domains. Biophysical Journal, 119, 265-273.
https://doi.org/10.1016/j.bpj.2020.05.032
[33]  Wohland, T., Sim, S.R., Demoustier, M., Pandey, S., Kulkarni, R. and Aik, D. (2024) FCS Videos: Fluorescence Correlation Spectroscopy in Space and Time. Biochimica et Biophysica Acta (BBA)—General Subjects, 1868, Article ID: 130716.
https://doi.org/10.1016/j.bbagen.2024.130716
[34]  杜治学. 基于荧光相关光谱技术的单细胞PTEN蛋白动力学及p53-MDM2相互作用的研究[D]: [博士学位论文]. 上海: 上海交通大学, 2018.
[35]  Smith, A.W. (2024) Recent Applications of Fluorescence Correlation Spectroscopy in Live Cells. Current Opinion in Chemical Biology, 81, Article ID: 102480.
https://doi.org/10.1016/j.cbpa.2024.102480
[36]  Ghimire, G., Espinoza, R., Xu, H., Nagasaka, S., Kameta, N., Masuda, M., et al. (2019) Diffusion Behavior of Differently Charged Molecules in Self-Assembled Organic Nanotubes Studied Using Imaging Fluorescence Correlation Spectroscopy. Langmuir, 35, 7783-7790.
https://doi.org/10.1021/acs.langmuir.9b01022
[37]  Vesga, A.G., Villegas, L., Vequi-Suplicy, C.C., Sorzano, C.O.S. and Requejo-Isidro, J. (2023) Quantitative Characterization of Membrane-Protein Reversible Association Using Fcs. Biophysical Journal, 122, 2285-2300.
https://doi.org/10.1016/j.bpj.2023.01.026
[38]  Barbotin, A., Billaudeau, C., Sezgin, E. and Carballido-López, R. (2024) Quantification of Membrane Fluidity in Bacteria Using TIR-FCS. Biophysical Journal, 123, 2484-2495.
https://doi.org/10.1016/j.bpj.2024.06.012
[39]  Hahn, E.L. (1950) Spin Echoes. Physical Review, 80, 580-594.
https://doi.org/10.1103/physrev.80.580
[40]  Morris, K.F. and Johnson, C.S. (1992) Diffusion-ordered Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. Journal of the American Chemical Society, 114, 3139-3141.
https://doi.org/10.1021/ja00034a071
[41]  Gozansky, E.K. and Gorenstein, D.G. (1996) DOSY-NOESY: Diffusion-Ordered NOESY. Journal of Magnetic Resonance, Series B, 111, 94-96.
https://doi.org/10.1006/jmrb.1996.0066
[42]  Williamson, R.T., Chapin, E.L., Carr, A.W., Gilbert, J.R., Graupner, P.R., Lewer, P., et al. (2000) New Diffusion-Edited NMR Experiments to Expedite the Dereplication of Known Compounds from Natural Product Mixtures. Organic Letters, 2, 289-292.
https://doi.org/10.1021/ol991239r
[43]  Stchedroff, M.J., Kenwright, A.M., Morris, G.A., Nilsson, M. and Harris, R.K. (2004) 2D and 3D DOSY Methods for Studying Mixtures of Oligomeric Dimethylsiloxanes. Physical Chemistry Chemical Physics, 6, 3221-3227.
https://doi.org/10.1039/b403960b
[44]  Wu, D., Chen, A. and Johnson Jr., C.S. (1996) Three-Dimensional Diffusion-Ordered NMR Spectroscopy: The Homonuclear COSY-DOSY Experiment. Journal of Magnetic Resonance, Series A, 121, 88-91.
https://doi.org/10.1006/jmra.1996.0142
[45]  Viel, S. and Caldarelli, S. (2008) Improved 3D DOSY-TOCSY Experiment for Mixture Analysis. Chemical Communications, 44, 2013-2015.
https://doi.org/10.1039/b802789g
[46]  Gao, S., Yuan, J., Ye, F., Liu, Z., Zheng, A. and Xu, S. (2024) Applications of 129Xe and PFG NMR Techniques on Adsorption and Diffusion of Molecular Sieve Materials. Journal of Magnetic Resonance Open, 21, Article ID: 100180.
https://doi.org/10.1016/j.jmro.2024.100180
[47]  Evans, R. (2020) The Interpretation of Small Molecule Diffusion Coefficients: Quantitative Use of Diffusion-Ordered NMR Spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 117, 33-69.
https://doi.org/10.1016/j.pnmrs.2019.11.002
[48]  Smirnov, M., Gamov, G., Zyubin, A., Zozulya, A., Lyatun, I., Demishkevich, E., et al. (2025) Interaction of Gold and Platinum Nanoparticles with L-Tyrosine in Aqueous Solution: Conformational and Dynamic Changes. Journal of Molecular Liquids, 420, Article ID: 126822.
https://doi.org/10.1016/j.molliq.2024.126822
[49]  de Carvalho, M.M., Ellefsen, C.F., Eltvik, A.A., Hiorth, M. and Samuelsen, A.B.C. (2025) Chemical Structure Characterization of Polysaccharides Using Diffusion Ordered NMR Spectroscopy (DOSY). Carbohydrate Polymers, 349, Article ID: 123021.
https://doi.org/10.1016/j.carbpol.2024.123021
[50]  Wang, L., Kuchendorf, C. and Willbold, S. (2019) Determination of Individual Chain Length and Chain-Length Distribution of Polyphosphates in Microalgae by 31P-DOSY-NMR. Algal Research, 43, Article ID: 101631.
https://doi.org/10.1016/j.algal.2019.101631
[51]  Cao, R., Liu, X., Liu, Y., Zhai, X., Cao, T., Wang, A., et al. (2021) Applications of Nuclear Magnetic Resonance Spectroscopy to the Evaluation of Complex Food Constituents. Food Chemistry, 342, Article ID: 128258.
https://doi.org/10.1016/j.foodchem.2020.128258
[52]  张鹏, 陈媛, 罗维. 核磁共振扩散序谱的研究及应用进展[J]. 分析测试学报, 2020, 39(9): 1050-1057.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133