|
基于MAGeI3钙钛矿太阳能电池结构的设计及性能研究
|
Abstract:
本文利用Scaps-1d软件设计了甲基铵碘化锗(MAGeI3)作为光吸收层,硫氰酸亚铜(CuSCN)作为空穴传输层,TiO2作为电子传输层,ITO和Au分别为前、后接触电极的Ge基钙钛矿太阳能电池。研究了空穴传输层的带隙、受主掺杂浓度、钙钛矿吸收层的缺陷态密度,以及MAGeI3/CuSCN界面缺陷等关键参数对器件性能的影响,优化后,器件的光电转换效率为33.82%,相比初始参数下得到的光电转化效率24.07%,提高了9.75%。
This paper designs a perovskite solar cell based on Ge-based using Scaps-1d software, with methylammonium germanium iodide (MAGeI3) as the light absorption layer, copper(I) thiocyanate (CuSCN) as the hole transport layer, TiO2 as the electron transport layer, and ITO and Au as the front and back contact electrodes, respectively. The effects of key parameters such as the bandgap of the hole transport layer, acceptor doping concentration, defect state density of the perovskite absorption layer, and interface defects between MAGeI3 and CuSCN on device performance are investigated. After optimization, the power conversion efficiency of the device reaches 33.82%, which is 9.75% higher than the initial efficiency of 24.07%.
[1] | 赵世欣. 基于国内专利的钙钛矿太阳能电池发展趋势[J]. 中国科技信息, 2024(3): 30-32. |
[2] | Deepthi Jayan, K. and Sebastian, V. (2021) Comprehensive Device Modelling and Performance Analysis of MASnI3 Based Perovskite Solar Cells with Diverse ETM, HTM and Back Metal Contacts. Solar Energy, 217, 40-48. https://doi.org/10.1016/j.solener.2021.01.058 |
[3] | Devi, C. and Mehra, R. (2019) Device Simulation of Lead-Free MASnI3 Solar Cell with CuSbS2 (Copper Antimony Sulfide). Journal of Materials Science, 54, 5615-5624. https://doi.org/10.1007/s10853-018-03265-y |
[4] | Lakhdar, N. and Hima, A. (2020) Electron Transport Material Effect on Performance of Perovskite Solar Cells Based on CH3NH3GeI3. Optical Materials, 99, 109517. https://doi.org/10.1016/j.optmat.2019.109517 |
[5] | Bhattarai, S. and Das, T.D. (2021) Optimization of Carrier Transport Materials for the Performance Enhancement of the MAGeI3 Based Perovskite Solar Cell. Solar Energy, 217, 200-207. https://doi.org/10.1016/j.solener.2021.02.002 |
[6] | Jayan K., D. and Sebastian, V. (2021) Comparative Study on the Performance of Different Lead‐Based and Lead‐Free Perovskite Solar Cells. Advanced Theory and Simulations, 4, Article ID: 2100027. https://doi.org/10.1002/adts.202100027 |
[7] | Sarker, S., Islam, M.T., Rauf, A., Al Jame, H., Jani, M.R., Ahsan, S., et al. (2021) A SCAPS Simulation Investigation of Non-Toxic MAGeI3-on-Si Tandem Solar Device Utilizing Monolithically Integrated (2-T) and Mechanically Stacked (4-T) Configurations. Solar Energy, 225, 471-485. https://doi.org/10.1016/j.solener.2021.07.057 |
[8] | Li, K., Wang, S., Chen, C., Kondrotas, R., Hu, M., Lu, S., et al. (2019) 7.5% n-i–p Sb2Se3 Solar Cells with CuSCN as a Hole-Transport Layer. Journal of Materials Chemistry A, 7, 9665-9672. https://doi.org/10.1039/c9ta01773a |
[9] | Hou, S., Shi, B., Wang, P., Li, Y., Zhang, J., Chen, P., et al. (2020) Highly Efficient Bifacial Semitransparent Perovskite Solar Cells Based on Molecular Doping of CuSCN Hole Transport Layer. Chinese Physics B, 29, Article ID: 078801. https://doi.org/10.1088/1674-1056/ab99ae |
[10] | 王茹, 龚志明, 姜月, 等. 钙钛矿太阳能电池及其空穴传输研究综述[J]. 材料研究与应用, 2022, 16(5): 703-717. |
[11] | Mahapatra, B., Krishna, R.V. and Patel, P.K. (2022) Design and Optimization of CuSCN/CH3NH3PbI3/TiO2 Perovskite Solar Cell for Efficient Performance. Optics Communications, 504, Article ID: 127496. |
[12] | Sahoo, D. and Manik, N.B. (2022) Study on the Effect of Temperature on Electrical and Photovoltaic Parameters of Lead-Free Tin-Based Perovskite Solar Cell. Indian Journal of Physics, 97, 447-455. https://doi.org/10.1007/s12648-022-02401-4 |