|
基于异步事件驱动的Kuramoto振子网络系统的脉冲同步控制
|
Abstract:
本文探讨了基于异步事件驱动脉冲控制策略的Kuramoto网络振子同步控制问题。针对一致性Kuramoto振子网络,设计了一类具有执行器延迟的事件触发脉冲控制策略,基于Lyapunov稳定性理论进行了理论证明。通过数值仿真验证了所提出策略的有效性,结果显示在特定条件下系统能够实现相位同步,同时有效避免了Zeno现象的发生。研究进一步扩展至非一致性Kuramoto网络振子,分析了在事件触发控制下的频率同步问题,并提供了相应的理论支持和数值模拟,丰富了Kuramoto模型的应用范围。
In this paper, the problem of synchronized control of Kuramoto network oscillators based on asynchronous event-driven pulse control strategies is explored. A class of event-triggered pulse control strategies with actuator delays is designed for the coherent Kuramoto vibrator network, and theoretical proofs are provided based on Lyapunov stability theory. The effectiveness of the proposed strategies is verified by numerical simulations, and the results show that the system is able to achieve phase synchronization under specific conditions while effectively avoiding the occurrence of Zeno phenomenon. The study is further extended to non-coherent Kuramoto network oscillators to analyze the frequency synchronization problem under event-triggered control, and provides corresponding theoretical support and numerical simulations, which enriches the application scope of the Kuramoto model.
[1] | Armaou, A. and D. Christofides, P. (2000) Feedback Control of the Kuramoto-Sivashinsky Equation. Physica D: Nonlinear Phenomena, 137, 49-61. https://doi.org/10.1016/s0167-2789(99)00175-x |
[2] | Zgliczynski, P. and Mischaikow, K. (2001) Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation. Foundations of Computational Mathematics, 1, 255-288. https://doi.org/10.1007/s002080010010 |
[3] | Wazwaz, A. (2006) New Solitary Wave Solutions to the Kuramoto-Sivashinsky and the Kawahara Equations. Applied Mathematics and Computation, 182, 1642-1650. https://doi.org/10.1016/j.amc.2006.06.002 |
[4] | Lin, C. and Lin, M. (2009) The Mathematical Research for the Kuramoto Model of the Describing Neuronal Synchrony in the Brain. Communications in Nonlinear Science and Numerical Simulation, 14, 3258-3260. https://doi.org/10.1016/j.cnsns.2009.01.007 |
[5] | Dörfler, F. and Bullo, F. (2012) Synchronization and Transient Stability in Power Networks and Nonuniform Kuramoto Oscillators. SIAM Journal on Control and Optimization, 50, 1616-1642. https://doi.org/10.1137/110851584 |
[6] | Dörfler, F. and Bullo, F. (2011) On the Critical Coupling for Kuramoto Oscillators. SIAM Journal on Applied Dynamical Systems, 10, 1070-1099. https://doi.org/10.1137/10081530x |
[7] | Choi, Y., Ha, S. and Yun, S. (2011) Complete Synchronization of Kuramoto Oscillators with Finite Inertia. Physica D: Nonlinear Phenomena, 240, 32-44. https://doi.org/10.1016/j.physd.2010.08.004 |
[8] | Huh, H. and Kim, D. (2024) Critical Threshold for Synchronizability of High-Dimensional Kuramoto Oscillators under Higher-Order Interactions. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34, Article ID: 123119. https://doi.org/10.1063/5.0211410 |
[9] | Millán, A.P., Torres, J.J. and Bianconi, G. (2020) Explosive Higher-Order Kuramoto Dynamics on Simplicial Complexes. Physical Review Letters, 124, Article ID: 218301. https://doi.org/10.1103/physrevlett.124.218301 |
[10] | Zhang, H. and Yan, X. (2024) Prescribed-Time Synchronization of Kuramoto Oscillators over Undirected Network. IEEE Transactions on Circuits and Systems II: Express Briefs, 71, 3041-3045. https://doi.org/10.1109/tcsii.2024.3353341 |
[11] | Popović, N. (2012) A Geometric Analysis of Front Propagation in an Integrable Nagumo Equation with a Linear Cut-off. Physica D: Nonlinear Phenomena, 241, 1976-1984. https://doi.org/10.1016/j.physd.2011.05.007 |
[12] | Evangelakos, V., Paspalakis, E. and Stefanatos, D. (2024) Fast Charging of an Ising-Spin-Pair Quantum Battery Using Optimal Control. Physical Review A, 110, Article ID: 052601. https://doi.org/10.1103/physreva.110.052601 |
[13] | Nguyen, T. and McCaskey, A. (2022) Enabling Pulse-Level Programming, Compilation, and Execution in XACC. IEEE Transactions on Computers, 71, 547-558. https://doi.org/10.1109/tc.2021.3057166 |
[14] | Wang, Y., Song, Y., Hill, D.J. and Krstic, M. (2019) Prescribed-Time Consensus and Containment Control of Networked Multiagent Systems. IEEE Transactions on Cybernetics, 49, 1138-1147. https://doi.org/10.1109/tcyb.2017.2788874 |
[15] | Wang, Z., Ren, F., Luo, D., Yan, Z. and Wu, L. (2020) Almost-Exact State Transfer by Leakage-Elimination-Operator Control in a Non-Markovian Environment. Physical Review A, 102, Article ID: 042406. https://doi.org/10.1103/physreva.102.042406 |
[16] | 熊河浪. 一类二阶Kuramoto振子系统的同步分析[D]: [硕士学位论文]. 重庆: 重庆理工大学, 2022. |
[17] | Xiao, Q., Liu, H. and Wang, Y. (2023) An Improved Finite-Time and Fixed-Time Stable Synchronization of Coupled Discontinuous Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 34, 3516-3526. https://doi.org/10.1109/TNNLS.2021.3116320 |
[18] | Hong, M., Yang, H., Qi, Y., Wu, J. and Sun, Y. (2024) Synchronization of Kuramoto-Oscillator Networks under Event-Triggered Impulsive Control with Noise Perturbation. Systems & Control Letters, 192, Article ID: 105884. https://doi.org/10.1016/j.sysconle.2024.105884 |
[19] | Zhang, H., Liu, X. and Xu, W. (2021) Threshold Dynamics and Pulse Control of a Stochastic Ecosystem with Switching Parameters. Journal of the Franklin Institute, 358, 516-532. https://doi.org/10.1016/j.jfranklin.2020.10.035 |