全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

RLRs翻译后修饰在抗病毒先天免疫中的研究进展
Advance in Post-Translational Modification of RLRs in Antiviral Innate Immunity

DOI: 10.12677/amb.2025.142014, PP. 117-128

Keywords: RIG-I样受体,翻译后修饰,抗病毒免疫
RIG-I Like Receptor
, Post-Translational Modification, Antiviral Immunity

Full-Text   Cite this paper   Add to My Lib

Abstract:

维甲酸诱导基因I (Retinoic Acid-Inducible Gene I, RIG-I)样受体(Retinoic Acid Gene I-Like Receptors, RLRs)是病毒感染的关键感受器,能够识别病毒的RNA,激活线粒体抗病毒信号蛋白(Mitochondrial Antiviral Signaling Protein, MAVS)启动下游信号传导,诱导I型干扰素(Interferon, IFN)的产生,建立有效的抗病毒免疫响应。蛋白质翻译后修饰(Post-Translational Modifications, PTMs)作为调控模式识别受体及其下游信号分子稳定性和活性的关键机制,对干扰素介导的免疫反应至关重要。通过不同的PTMs,包括经典的磷酸化和泛素化,以及其他PTMs如甲基化、乙酰化、SUMO化以及ISG化等,不仅影响RLRs自身的功能状态,还影响着其下游信号分子的活性与定位。本文综述了近年来关于RLRs的PTMs在抗病毒免疫方面的研究进展,旨在为挖掘抗病毒治疗的新靶点提供创新思路。
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules, which mediated intracellular virus recognition. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins (MAVS), thereby lead to the transcriptional induction of type I interferons (IFN-I) and establish an antiviral host response. Post-translational modification (PTM), as a key mechanism to regulate the activity and stability of pattern recognition receptors and their downstream signaling molecules, plays a critical role in regulating interferon-mediated immune responses. A variety of PTM modifications, including classical phosphorylation and ubiquitination, as well as methylation, acetylation, SUMOylation, and ISGylation, not only affect the functional status of RLRs, but also the activity and localization of their downstream signaling molecules. This paper reviews the PTM regulation of RLRs in antiviral immunity in recent years, aiming to provide new insights of innate immunity and antiviral therapy.

References

[1]  Kumar, V. and Stewart IV, J.H. (2024) Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. Journal of Innate Immunity, 16, 295-323.
https://doi.org/10.1159/000539278
[2]  Lee, J.M., Hammarén, H.M., Savitski, M.M. and Baek, S.H. (2023) Control of Protein Stability by Post-Translational Modifications. Nature Communications, 14, Article No. 201.
https://doi.org/10.1038/s41467-023-35795-8
[3]  Brisse, M. and Ly, H. (2019) Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Frontiers in Immunology, 10, Article 1586.
https://doi.org/10.3389/fimmu.2019.01586
[4]  Schweibenz, B.D., Devarkar, S.C., Solotchi, M., Craig, C., Zheng, J., Pascal, B.D., et al. (2022) The Intrinsically Disordered CARDs‐Helicase Linker in RIG‐I Is a Molecular Gate for RNA Proofreading. The EMBO Journal, 41, e109782.
https://doi.org/10.15252/embj.2021109782
[5]  Jiang, F., Ramanathan, A., Miller, M.T., Tang, G., Gale, M., Patel, S.S., et al. (2011) Structural Basis of RNA Recognition and Activation by Innate Immune Receptor RIG-I. Nature, 479, 423-427.
https://doi.org/10.1038/nature10537
[6]  Linder, P. and Jankowsky, E. (2011) From Unwinding to Clamping—The DEAD Box RNA Helicase Family. Nature Reviews Molecular Cell Biology, 12, 505-516.
https://doi.org/10.1038/nrm3154
[7]  Zhu, Z., Zhang, M., Yuan, L., Xu, Y., Zhou, H., Lian, Z., et al. (2023) LGP2 Promotes Type I Interferon Production to Inhibit PRRSV Infection via Enhancing MDA5-Mediated Signaling. Journal of Virology, 97, e0184322.
https://doi.org/10.1128/jvi.01843-22
[8]  He, Y., Liu, J., Miao, Y., Liu, M., Wu, H., Xiao, J., et al. (2023) Black Carp LGP2 Suppresses RIG-I Mediated IFN Signaling during the Antiviral Innate Immunity. Fish & Shellfish Immunology, 143, Article 109208.
https://doi.org/10.1016/j.fsi.2023.109208
[9]  Goubau, D., Schlee, M., Deddouche, S., Pruijssers, A.J., Zillinger, T., Goldeck, M., et al. (2014) Antiviral Immunity via RIG-I-Mediated Recognition of RNA Bearing 5’-Diphosphates. Nature, 514, 372-375.
https://doi.org/10.1038/nature13590
[10]  Pichlmair, A., Schulz, O., Tan, C., Rehwinkel, J., Kato, H., Takeuchi, O., et al. (2009) Activation of MDA5 Requires Higher-Order RNA Structures Generated during Virus Infection. Journal of Virology, 83, 10761-10769.
https://doi.org/10.1128/jvi.00770-09
[11]  Kato, H. and Fujita, T. (2016) Cytoplasmic Viral RNA Sensors: RIG-I-Like Receptors. Encyclopedia of Immunobiology, 2, 352-359.
https://doi.org/10.1016/b978-0-12-374279-7.02005-1
[12]  Wu, B. and Hur, S. (2015) How RIG-I Like Receptors Activate Mavs. Current Opinion in Virology, 12, 91-98.
https://doi.org/10.1016/j.coviro.2015.04.004
[13]  Li, X., Zhang, Q., Ding, Y., Liu, Y., Zhao, D., Zhao, K., et al. (2016) Methyltransferase Dnmt3a Upregulates HDAC9 to Deacetylate the Kinase TBK1 for Activation of Antiviral Innate Immunity. Nature Immunology, 17, 806-815.
https://doi.org/10.1038/ni.3464
[14]  Zheng, J., Shi, W., Yang, Z., Chen, J., Qi, A., Yang, Y., et al. (2023) RIG-I-Like Receptors: Molecular Mechanism of Activation and Signaling. Advances in Immunology, 158, 1-74.
https://doi.org/10.1016/bs.ai.2023.03.001
[15]  Ramazi, S., Allahverdi, A. and Zahiri, J. (2020) Evaluation of Post-Translational Modifications in Histone Proteins: A Review on Histone Modification Defects in Developmental and Neurological Disorders. Journal of Biosciences, 45, Article No. 135.
https://doi.org/10.1007/s12038-020-00099-2
[16]  Czuba, L.C., Hillgren, K.M. and Swaan, P.W. (2018) Post-Translational Modifications of Transporters. Pharmacology & Therapeutics, 192, 88-99.
https://doi.org/10.1016/j.pharmthera.2018.06.013
[17]  Zhang, Y. and Zeng, L. (2020) Crosstalk between Ubiquitination and Other Post-Translational Protein Modifications in Plant Immunity. Plant Communications, 1, Article 100041.
https://doi.org/10.1016/j.xplc.2020.100041
[18]  Gack, M.U., Nistal-Villán, E., Inn, K., García-Sastre, A. and Jung, J.U. (2010) Phosphorylation-Mediated Negative Regulation of RIG-I Antiviral Activity. Journal of Virology, 84, 3220-3229.
https://doi.org/10.1128/jvi.02241-09
[19]  Nistal-Villán, E., Gack, M.U., Martínez-Delgado, G., Maharaj, N.P., Inn, K., Yang, H., et al. (2010) Negative Role of RIG-I Serine 8 Phosphorylation in the Regulation of Interferon-Β Production. Journal of Biological Chemistry, 285, 20252-20261.
https://doi.org/10.1074/jbc.m109.089912
[20]  Maharaj, N.P., Wies, E., Stoll, A. and Gack, M.U. (2012) Conventional Protein Kinase C-α (PKC-α) and PKC-β Negatively Regulate RIG-I Antiviral Signal Transduction. Journal of Virology, 86, 1358-1371.
https://doi.org/10.1128/jvi.06543-11
[21]  Sun, Z., Ren, H., Liu, Y., Teeling, J.L. and Gu, J. (2011) Phosphorylation of RIG-I by Casein Kinase II Inhibits Its Antiviral Response. Journal of Virology, 85, 1036-1047.
https://doi.org/10.1128/jvi.01734-10
[22]  Willemsen, J., Wicht, O., Wolanski, J.C., Baur, N., Bastian, S., Haas, D.A., et al. (2017) Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-Wide siRNA Screening. Molecular Cell, 65, 403-415.E8.
https://doi.org/10.1016/j.molcel.2016.12.021
[23]  Zhang, J., Hu, M., Shu, H. and Li, S. (2014) Death-Associated Protein Kinase 1 Is an IRF3/7-Interacting Protein That Is Involved in the Cellular Antiviral Immune Response. Cellular & Molecular Immunology, 11, 245-252.
https://doi.org/10.1038/cmi.2013.65
[24]  Zhang, X., Yu, H., Zhao, J., Li, X., Li, J., He, J., et al. (2015) IKKϵ Negatively Regulates RIG‐I via Direct Phosphorylation. Journal of Medical Virology, 88, 712-718.
https://doi.org/10.1002/jmv.24376
[25]  Wies, E., Wang, M.K., Maharaj, N.P., Chen, K., Zhou, S., Finberg, R.W., et al. (2013) Dephosphorylation of the RNA Sensors RIG-I and MDA5 by the Phosphatase PP1 Is Essential for Innate Immune Signaling. Immunity, 38, 437-449.
https://doi.org/10.1016/j.immuni.2012.11.018
[26]  Takashima, K., Oshiumi, H., Takaki, H., Matsumoto, M. and Seya, T. (2015) RIOK3-Mediated Phosphorylation of MDA5 Interferes with Its Assembly and Attenuates the Innate Immune Response. Cell Reports, 11, 192-200.
https://doi.org/10.1016/j.celrep.2015.03.027
[27]  Oshiumi, H., Miyashita, M., Matsumoto, M. and Seya, T. (2013) A Distinct Role of Riplet-Mediated K63-Linked Polyubiquitination of the RIG-I Repressor Domain in Human Antiviral Innate Immune Responses. PLOS Pathogens, 9, e1003533.
https://doi.org/10.1371/journal.ppat.1003533
[28]  Cadena, C., Ahmad, S., Xavier, A., Willemsen, J., Park, S., Park, J.W., et al. (2019) Ubiquitin-Dependent and-Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell, 177, 1187-1200.E16.
https://doi.org/10.1016/j.cell.2019.03.017
[29]  Jiang, X., Kinch, L.N., Brautigam, C.A., Chen, X., Du, F., Grishin, N.V., et al. (2012) Ubiquitin-Induced Oligomerization of the RNA Sensors RIG-I and MDA5 Activates Antiviral Innate Immune Response. Immunity, 36, 959-973.
https://doi.org/10.1016/j.immuni.2012.03.022
[30]  Gao, D., Yang, Y., Wang, R., Zhou, X., Diao, F., Li, M., et al. (2009) REUL Is a Novel E3 Ubiquitin Ligase and Stimulator of Retinoic-Acid-Inducible Gene-I. PLOS ONE, 4, e5760.
https://doi.org/10.1371/journal.pone.0005760
[31]  Shi, Y., Yuan, B., Zhu, W., Zhang, R., Li, L., Hao, X., et al. (2017) Ube2D3 and Ube2N Are Essential for RIG-I-Mediated MAVS Aggregation in Antiviral Innate Immunity. Nature Communications, 8, Article No. 15138.
https://doi.org/10.1038/ncomms15138
[32]  Gack, M.U., Shin, Y.C., Joo, C., Urano, T., Liang, C., Sun, L., et al. (2007) TRIM25 Ring-Finger E3 Ubiquitin Ligase Is Essential for RIG-I-Mediated Antiviral Activity. Nature, 446, 916-920.
https://doi.org/10.1038/nature05732
[33]  Lian, H., Zang, R., Wei, J., Ye, W., Hu, M., Chen, Y., et al. (2018) The Zinc-Finger Protein ZCCHC3 Binds RNA and Facilitates Viral RNA Sensing and Activation of the RIG-I-Like Receptors. Immunity, 49, 438-448.E5.
https://doi.org/10.1016/j.immuni.2018.08.014
[34]  Wang, P., Arjona, A., Zhang, Y., Sultana, H., Dai, J., Yang, L., et al. (2010) Caspase-12 Controls West Nile Virus Infection via the Viral RNA Receptor RIG-I. Nature Immunology, 11, 912-919.
https://doi.org/10.1038/ni.1933
[35]  Liu, Z., Wu, C., Pan, Y., Liu, H., Wang, X., Yang, Y., et al. (2019) NDR2 Promotes the Antiviral Immune Response via Facilitating TRIM25-Mediated RIG-I Activation in Macrophages. Science Advances, 5, eaav0163.
https://doi.org/10.1126/sciadv.aav0163
[36]  Chen, S., Chen, L., Lin, D.S., Chen, S., Tsao, Y., Guo, H., et al. (2019) NLRP12 Regulates Anti-Viral RIG-I Activation via Interaction with TRIM25. Cell Host & Microbe, 25, 602-616.E7.
https://doi.org/10.1016/j.chom.2019.02.013
[37]  Lin, H., Jiang, M., Liu, L., Yang, Z., Ma, Z., Liu, S., et al. (2019) The Long Noncoding RNA Lnczc3h7a Promotes a TRIM25-Mediated RIG-I Antiviral Innate Immune Response. Nature Immunology, 20, 812-823.
https://doi.org/10.1038/s41590-019-0379-0
[38]  Inn, K., Gack, M.U., Tokunaga, F., Shi, M., Wong, L., Iwai, K., et al. (2011) Linear Ubiquitin Assembly Complex Negatively Regulates RIG-I-and TRIM25-Mediated Type I Interferon Induction. Molecular Cell, 41, 354-365.
https://doi.org/10.1016/j.molcel.2010.12.029
[39]  Quicke, K.M., Kim, K.Y., Horvath, C.M. and Suthar, M.S. (2019) RNA Helicase LGP2 Negatively Regulates RIG-I Signaling by Preventing TRIM25-Mediated Caspase Activation and Recruitment Domain Ubiquitination. Journal of Interferon & Cytokine Research, 39, 669-683.
https://doi.org/10.1089/jir.2019.0059
[40]  Yan, J., Li, Q., Mao, A.-P., Hu, M.-M. and Shu, H.-B. (2014) TRIM4 Modulates Type I Interferon Induction and Cellular Antiviral Response by Targeting RIG-I for K63-Linked Ubiquitination. Journal of Molecular Cell Biology, 6, 154-163.
https://doi.org/10.1093/jmcb/mju005
[41]  Kuniyoshi, K., Takeuchi, O., Pandey, S., Satoh, T., Iwasaki, H., Akira, S., et al. (2014) Pivotal Role of RNA-Binding E3 Ubiquitin Ligase MEX3C in RIG-I-Mediated Antiviral Innate Immunity. Proceedings of the National Academy of Sciences, 111, 5646-5651.
https://doi.org/10.1073/pnas.1401674111
[42]  Jiang, X., Xiao, Y., Hou, W., Yu, J., He, T. and Xu, L. (2023) The RNA‐Binding Protein ZFP36 Strengthens Innate Antiviral Signaling by Targeting RIG‐I for K63‐linked Ubiquitination. Journal of Cellular Physiology, 238, 2348-2360.
https://doi.org/10.1002/jcp.31088
[43]  Wang, W., Jiang, M., Liu, S., Zhang, S., Liu, W., Ma, Y., et al. (2016) RNF122 Suppresses Antiviral Type I Interferon Production by Targeting RIG-I Cards to Mediate RIG-I Degradation. Proceedings of the National Academy of Sciences, 113, 9581-9586.
https://doi.org/10.1073/pnas.1604277113
[44]  Arimoto, K., Takahashi, H., Hishiki, T., Konishi, H., Fujita, T. and Shimotohno, K. (2007) Negative Regulation of the RIG-I Signaling by the Ubiquitin Ligase RNF125. Proceedings of the National Academy of Sciences, 104, 7500-7505.
https://doi.org/10.1073/pnas.0611551104
[45]  Hao, Q., Jiao, S., Shi, Z., Li, C., Meng, X., Zhang, Z., et al. (2015) A Non‐Canonical Role of the P97 Complex in RIG‐I Antiviral Signaling. The EMBO Journal, 34, 2903-2920.
https://doi.org/10.15252/embj.201591888
[46]  Zhou, P., Ding, X., Wan, X., Liu, L., Yuan, X., Zhang, W., et al. (2018) MLL5 Suppresses Antiviral Innate Immune Response by Facilitating Stub1-Mediated RIG-I Degradation. Nature Communications, 9, Article No. 1243.
https://doi.org/10.1038/s41467-018-03563-8
[47]  Chen, W., Han, C., Xie, B., Hu, X., Yu, Q., Shi, L., et al. (2013) Induction of Siglec-G by RNA Viruses Inhibits the Innate Immune Response by Promoting RIG-I Degradation. Cell, 152, 467-478.
https://doi.org/10.1016/j.cell.2013.01.011
[48]  Zhao, K., Zhang, Q., Li, X., Zhao, D., Liu, Y., Shen, Q., et al. (2016) Cytoplasmic STAT4 Promotes Antiviral Type I IFN Production by Blocking Chip-Mediated Degradation of RIG-I. The Journal of Immunology, 196, 1209-1217.
https://doi.org/10.4049/jimmunol.1501224
[49]  Zhao, C., Jia, M., Song, H., Yu, Z., Wang, W., Li, Q., et al. (2017) The E3 Ubiquitin Ligase TRIM40 Attenuates Antiviral Immune Responses by Targeting MDA5 and RIG-I. Cell Reports, 21, 1613-1623.
https://doi.org/10.1016/j.celrep.2017.10.020
[50]  Shen, Y., Tang, K., Chen, D., Hong, M., Sun, F., Wang, S., et al. (2021) Riok3 Inhibits the Antiviral Immune Response by Facilitating TRIM40-Mediated RIG-I and MDA5 Degradation. Cell Reports, 35, Article 109272.
https://doi.org/10.1016/j.celrep.2021.109272
[51]  Lang, X., Tang, T., Jin, T., Ding, C., Zhou, R. and Jiang, W. (2016) TRIM65-Catalized Ubiquitination Is Essential for MDA5-Mediated Antiviral Innate Immunity. Journal of Experimental Medicine, 214, 459-473.
https://doi.org/10.1084/jem.20160592
[52]  Narayan, K., Waggoner, L., Pham, S.T., Hendricks, G.L., Waggoner, S.N., Conlon, J., et al. (2014) TRIM13 Is a Negative Regulator of MDA5-Mediated Type I Interferon Production. Journal of Virology, 88, 10748-10757.
https://doi.org/10.1128/jvi.02593-13
[53]  Mattiroli, F. and Sixma, T.K. (2014) Lysine-Targeting Specificity in Ubiquitin and Ubiquitin-Like Modification Pathways. Nature Structural & Molecular Biology, 21, 308-316.
https://doi.org/10.1038/nsmb.2792
[54]  Chen, R., Zhang, L., Zhong, B., Tan, B., Liu, Y. and Shu, H. (2010) The Ubiquitin-Specific Protease 17 Is Involved in Virus-Triggered Type I IFN Signaling. Cell Research, 20, 802-811.
https://doi.org/10.1038/cr.2010.41
[55]  Wang, L., Zhao, W., Zhang, M., Wang, P., Zhao, K., Zhao, X., et al. (2013) USP4 Positively Regulates RIG-I-Mediated Antiviral Response through Deubiquitination and Stabilization of RIG-I. Journal of Virology, 87, 4507-4515.
https://doi.org/10.1128/jvi.00031-13
[56]  Pauli, E., Chan, Y.K., Davis, M.E., Gableske, S., Wang, M.K., Feister, K.F., et al. (2014) The Ubiquitin-Specific Protease USP15 Promotes RIG-I-Mediated Antiviral Signaling by Deubiquitylating TRIM25. Science Signaling, 7, ra3.
https://doi.org/10.1126/scisignal.2004577
[57]  Cui, J., Song, Y., Li, Y., Zhu, Q., Tan, P., Qin, Y., et al. (2013) USP3 Inhibits Type I Interferon Signaling by Deubiquitinating RIG-I-Like Receptors. Cell Research, 24, 400-416.
https://doi.org/10.1038/cr.2013.170
[58]  Fan, Y., Mao, R., Yu, Y., Liu, S., Shi, Z., Cheng, J., et al. (2014) USP21 Negatively Regulates Antiviral Response by Acting as a RIG-I Deubiquitinase. Journal of Experimental Medicine, 211, 313-328.
https://doi.org/10.1084/jem.20122844
[59]  Li, H., Zhao, Z., Ling, J., Pan, L., Zhao, X., Zhu, H., et al. (2018) USP14 Promotes K63‐Linked RIG‐I Deubiquitination and Suppresses Antiviral Immune Responses. European Journal of Immunology, 49, 42-53.
https://doi.org/10.1002/eji.201847603
[60]  Tao, X., Chu, B., Xin, D., Li, L. and Sun, Q. (2020) USP27X Negatively Regulates Antiviral Signaling by Deubiquitinating RIG-I. PLOS Pathogens, 16, e1008293.
https://doi.org/10.1371/journal.ppat.1008293
[61]  Jahan, A.S., Biquand, E., Muñoz-Moreno, R., Le Quang, A., Mok, C.K., Wong, H.H., et al. (2020) OTUB1 Is a Key Regulator of RIG-I-Dependent Immune Signaling and Is Targeted for Proteasomal Degradation by Influenza A NS1. Cell Reports, 30, 1570-1584.E6.
https://doi.org/10.1016/j.celrep.2020.01.015
[62]  Friedman, C.S., O’Donnell, M.A., Legarda‐Addison, D., Ng, A., Cárdenas, W.B., Yount, J.S., et al. (2008) The Tumour Suppressor CYLD Is a Negative Regulator of RIG‐I‐Mediated Antiviral Response. EMBO Reports, 9, 930-936.
https://doi.org/10.1038/embor.2008.136
[63]  Gill, G. (2004) SUMO and Ubiquitin in the Nucleus: Different Functions, Similar Mechanisms? Genes & Development, 18, 2046-2059.
https://doi.org/10.1101/gad.1214604
[64]  Hay, R.T. (2005) SUMO: A History of Modification. Molecular Cell, 18, 1-12.
https://doi.org/10.1016/j.molcel.2005.03.012
[65]  Zhu, G., Tong, N., Zhu, Y., Wang, L. and Wang, Q. (2024) The Crosstalk between Sumoylation and Immune System in Host-Pathogen Interactions. Critical Reviews in Microbiology, 51, 164-186.
https://doi.org/10.1080/1040841x.2024.2339259
[66]  Mi, Z., Fu, J., Xiong, Y. and Tang, H. (2010) Sumoylation of RIG-I Positively Regulates the Type I Interferon Signaling. Protein & Cell, 1, 275-283.
https://doi.org/10.1007/s13238-010-0030-1
[67]  Yang, D., Geng, T., Harrison, A.G., Cahoon, J.G., Xing, J., Jiao, B., et al. (2024) UBR5 Promotes Antiviral Immunity by Disengaging the Transcriptional Brake on RIG-I Like Receptors. Nature Communications, 15, Article No. 780.
https://doi.org/10.1038/s41467-024-45141-1
[68]  Zhang, Y. and Samuelson, A.V. (2024) Antiviral Defense in Aged Caenorhabditis Elegans Declines Due to Loss of DRH-1/RIG-I deSUMOylation via ULP-4/SENP7. Preprint.
https://doi.org/10.1101/2024.11.12.623310
[69]  Jenkins, K., Khoo, J.J., Sadler, A., Piganis, R., Wang, D., Borg, N.A., et al. (2013) Mitochondrially Localised MUL1 Is a Novel Modulator of Antiviral Signaling. Immunology & Cell Biology, 91, 321-330.
https://doi.org/10.1038/icb.2013.7
[70]  Hu, M., Liao, C., Yang, Q., Xie, X. and Shu, H. (2017) Innate Immunity to RNA Virus Is Regulated by Temporal and Reversible Sumoylation of RIG-I and Mda5. Journal of Experimental Medicine, 214, 973-989.
https://doi.org/10.1084/jem.20161015
[71]  Chen, Y., Li, J., Fu, J., Xiao, L., Chu, J., Qin, W., et al. (2025) SENP2 Negatively Regulates RIG-I/MDA5 Mediated Innate Immunity in Black Carp. Fish & Shellfish Immunology, 157, Article 110097.
https://doi.org/10.1016/j.fsi.2024.110097
[72]  Kubota, T., Matsuoka, M., Xu, S., Otsuki, N., Takeda, M., Kato, A., et al. (2011) Piasy Inhibits Virus-Induced and Interferon-Stimulated Transcription through Distinct Mechanisms. Journal of Biological Chemistry, 286, 8165-8175.
https://doi.org/10.1074/jbc.m110.195255
[73]  Li, R., Pan, Y., Shi, D., Zhang, Y. and Zhang, J. (2013) PIAS1 Negatively Modulates Virus Triggered Type I IFN Signaling by Blocking the DNA Binding Activity of Irf3. Antiviral Research, 100, 546-554.
https://doi.org/10.1016/j.antiviral.2013.09.001
[74]  Fu, J., Xiong, Y., Xu, Y., Cheng, G. and Tang, H. (2011) MDA5 Is Sumoylated by PIAS2β in the Upregulation of Type I Interferon Signaling. Molecular Immunology, 48, 415-422.
https://doi.org/10.1016/j.molimm.2010.09.003
[75]  Perng, Y. and Lenschow, D.J. (2018) ISG15 in Antiviral Immunity and Beyond. Nature Reviews Microbiology, 16, 423-439.
https://doi.org/10.1038/s41579-018-0020-5
[76]  Tecalco-Cruz, A.C. and Zepeda-Cervantes, J. (2023) Protein Isgylation: A Posttranslational Modification with Implications for Malignant Neoplasms. Exploration of Targeted Anti-Tumor Therapy, 4, 699-715.
https://doi.org/10.37349/etat.2023.00162
[77]  Malakhov, M.P., Malakhova, O.A., Kim, K.I., Ritchie, K.J. and Zhang, D. (2002) UBP43 (USP18) Specifically Removes ISG15 from Conjugated Proteins. Journal of Biological Chemistry, 277, 9976-9981.
https://doi.org/10.1074/jbc.m109078200
[78]  Desai, S.D., Haas, A.L., Wood, L.M., Tsai, Y., Pestka, S., Rubin, E.H., et al. (2006) Elevated Expression of ISG15 in Tumor Cells Interferes with the Ubiquitin/26S Proteasome Pathway. Cancer Research, 66, 921-928.
https://doi.org/10.1158/0008-5472.can-05-1123
[79]  Wang, Y., Feng, H., Li, X., Ruan, Y., Guo, Y., Cui, X., et al. (2024) Dampening of Isgylation of RIG-I by ADAP Regulates Type I Interferon Response of Macrophages to RNA Virus Infection. PLOS Pathogens, 20, e1012230.
https://doi.org/10.1371/journal.ppat.1012230
[80]  Sarkar, L., Liu, G., Acharya, D., Zhu, J., Sayyad, Z. and Gack, M.U. (2024) MDA5 ISGylation Is Crucial for Immune Signaling to Control Viral Replication and Pathogenesis. Preprint.
https://doi.org/10.1101/2024.09.20.614144
[81]  Liu, G., Lee, J.H., Parker, Z.M., et al. (2021) ISG15-Dependent Activation of the RNA Sensor MDA5 and Its Antagonism by the SARS-CoV-2 Papain-Like Protease. Nature Microbiology, 6, 467-478.
https://doi.org/10.1038/s41564-021-00884-1
[82]  Nguyen, N.T.H., Now, H., Kim, W., Kim, N. and Yoo, J. (2016) Ubiquitin-Like Modifier FAT10 Attenuates RIG-I Mediated Antiviral Signaling by Segregating Activated RIG-I from Its Signaling Platform. Scientific Reports, 6, Article No. 23377.
https://doi.org/10.1038/srep23377
[83]  Wang, G., Kouwaki, T., Okamoto, M. and Oshiumi, H. (2019) Attenuation of the Innate Immune Response against Viral Infection Due to ZNF598-Promoted Binding of FAT10 to RIG-I. Cell Reports, 28, 1961-1970.E4.
https://doi.org/10.1016/j.celrep.2019.07.081
[84]  Pan, Q., Xie, Y., Zhang, Y., Guo, X., Wang, J., Liu, M., et al. (2024) EGFR Core Fucosylation, Induced by Hepatitis C Virus, Promotes Trim40-Mediated-RIG-I Ubiquitination and Suppresses Interferon-I Antiviral Defenses. Nature Communications, 15, Article No. 652.
https://doi.org/10.1038/s41467-024-44960-6
[85]  Li, Z., Zhou, Y., Jia, K., Yang, Y., Zhang, L., Wang, S., et al. (2022) JMJD4-Demethylated RIG-I Prevents Hepatic Steatosis and Carcinogenesis. Journal of Hematology & Oncology, 15, Article No. 161.
https://doi.org/10.1186/s13045-022-01381-6
[86]  Hu, Q., Wang, H., Jiang, L., Wang, C., Ju, L., Zhu, Y., et al. (2021) Histone Demethylase LSD1 Promotes RIG-I Poly-ubiquitination and Anti-Viral Gene Expression. PLOS Pathogens, 17, e1009918.
https://doi.org/10.1371/journal.ppat.1009918
[87]  Polevoda, B. and Sherman, F. (2002) The Diversity of Acetylated Proteins. Genome Biology, 3, reviews0006.1.
https://doi.org/10.1186/gb-2002-3-5-reviews0006
[88]  Li, Y. and Alam, H.B. (2011) Modulation of Acetylation: Creating a Pro‐Survival and Anti‐Inflammatory Phenotype in Lethal Hemorrhagic and Septic Shock. BioMed Research International, 2011, Article ID: 523481.
https://doi.org/10.1155/2011/523481
[89]  Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., et al. (2009) Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science, 325, 834-840.
https://doi.org/10.1126/science.1175371
[90]  Liu, H.M., Jiang, F., Loo, Y.M., Hsu, S., Hsiang, T., Marcotrigiano, J., et al. (2016) Regulation of Retinoic Acid Inducible Gene-I (RIG-I) Activation by the Histone Deacetylase 6. EBioMedicine, 9, 195-206.
https://doi.org/10.1016/j.ebiom.2016.06.015
[91]  Choi, S.J., Lee, H., Kim, J., Park, S.Y., Kim, T., Lee, W., et al. (2016) HDAC 6 Regulates Cellular Viral RNA Sensing by Deacetylation of RIG‐I. The EMBO Journal, 35, 429-442.
https://doi.org/10.15252/embj.201592586
[92]  Yuan, H., Wu, X., Wu, Q., Chatoff, A., Megill, E., Gao, J., et al. (2023) Lysine Catabolism Reprograms Tumour Immunity through Histone Crotonylation. Nature, 617, 818-826.
https://doi.org/10.1038/s41586-023-06061-0
[93]  He, S., Zhao, J., Song, S., He, X., Minassian, A., Zhou, Y., et al. (2015) Viral Pseudo-Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production. Molecular Cell, 58, 134-146.
https://doi.org/10.1016/j.molcel.2015.01.036
[94]  Zhao, J., Zeng, Y., Xu, S., Chen, J., Shen, G., Yu, C., et al. (2016) A Viral Deamidase Targets the Helicase Domain of RIG-I to Block RNA-Induced Activation. Cell Host & Microbe, 20, 770-784.
https://doi.org/10.1016/j.chom.2016.10.011
[95]  Garcin, D. (2016) HSV1 Pulls the Deamidation Trigger. Cell Host & Microbe, 20, 698-700.
https://doi.org/10.1016/j.chom.2016.11.011
[96]  Huang, H., Zhao, J., Wang, T., Zhang, S., Zhou, Y., Rao, Y., et al. (2021) Species-Specific Deamidation of RIG-I Reveals Collaborative Action between Viral and Cellular Deamidases in HSV-1 Lytic Replication. mBio, 12.
https://doi.org/10.1128/mbio.00115-21

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133