|
HIF-1α干预中性粒细胞胞外陷阱对SD脓毒症大鼠模型的影响
|
Abstract:
目的:证明缺氧诱导因子-1α (hypoxia inducible factor-1α, HIF-1α)通过HIF-1α/糖酵解途径调节中性粒细胞胞外陷阱(Neutrophil Extracellular Traps, NETs)的形成和释放,影响脓毒症(sepsis)炎症反应。方法:建立脓毒症大鼠模型,给予HIF-1α抑制剂。收集各组大鼠外周血进行ELISA检测TLR4、NF-κB、IL-10、CitH3、cfDNA、MPO含量;肺组织样本进行苏木素–伊红(HE)染色、肺损伤评分及RT-qPCR检测HIF-1α、GLUT1、HK、PKM2、LDHA mRNA的表达。结果:肺组织HE染色结果:脓毒症模型组肺泡腔显著闭塞,肺组织实变,实变区肺组织内可见较多炎细胞浸润及损伤肺泡上皮细胞,局灶可见出血,d4较d1炎性渗出明显增多、损伤程度加重;HIF-1α抑制剂组肺组织损伤程度较LPS组同时期减轻,且时间越长,减轻程度越明显。肺损伤评分、肺组织HIF-1α、GLUT1、HK、PKM2、LDHA表达和外周血TLR4、NF-κB、IL-10、CitH3、cfDNA、MPO含量:LPS组d1、d4上述指标较NC组同时期均升高(均P < 0.05),且LPS组d4较LPS组d1均升高(均P < 0.05),差异有统计学意义;LPS + HIF-1α (?)组d1较NC组同时期均升高(均P < 0.05),LPS + HIF-1α (?)组d7较d1均显著降低(均P < 0.05),LPS + HIF-1α (?)组d4、d7较LPS组同时期均降低(均P < 0.05),差异有统计学意义。结论:(1) 在LPS诱导的大鼠模型中,HIF-1α、糖酵解、NETs、炎症的表达均增高,表明这一通路在脓毒症的调控中发挥了一定作用;(2) 通过抑制HIF-1α,糖酵解、NETs及炎症表达下降,可能为脓毒症的治疗提供一个新的靶点。
Objective: To demonstrate that hypoxia-inducible factor-1α (HIF-1α) regulates the formation and release of neutrophil extracellular traps (NETs) through the HIF-1α/glycolysis pathway, thereby modulating the inflammatory response in sepsis. Methods: A rat sepsis model was established and treated with HIF-1α inhibitors. Peripheral blood samples were collected for ELISA detection of TLR4, NF-κB, IL-10, CitH3, cfDNA, and MPO levels. Lung tissue samples underwent hematoxylin and eosin (HE) staining, lung injury scoring, and RT-qPCR analysis of HIF-1α, GLUT1, HK, PKM2, LDHA mRNA expression. Results: HE staining of lung tissue: The sepsis model group (LPS group) exhibited significant alveolar space occlusion, pulmonary consolidation, inflammatory cell infiltration, damaged alveolar epithelial cells, and focal hemorrhage. Inflammatory exudation and tissue damage worsened on day 4 compared to day 1. The HIF-1α inhibition group showed reduced lung injury severity compared to the LPS group at the same time points, with greater improvement over time. Lung injury scores and expression of HIF-1α, GLUT1, HK, PKM2, LDHA, and peripheral blood biomarkers (TLR4, NF-κB, IL-10, CitH3, cfDNA, MPO): Compared to the normal control
[1] | Piva, S., Bertoni, M., Gitti, N., Rasulo, F.A. and Latronico, N. (2023) Neurological Complications of Sepsis. Current Opinion in Critical Care, 29, 75-84. https://doi.org/10.1097/mcc.0000000000001022 |
[2] | Srzić, I. (2022) Sepsis Definition: What’s New in the Treatment Guidelines. Acta clinica croatica, 61, 67-72. https://doi.org/10.20471/acc.2022.61.s1.11 |
[3] | Caraballo, C. and Jaimes, F. (2019) Organ Dysfunction in Sepsis: An Ominous Trajectory from Infection to Death. The Yale Journal of Biology and Medicine, 92, 629-640. |
[4] | Zhu, C., Wang, Y., Liu, Q., Li, H., Yu, C., Li, P., et al. (2022) Dysregulation of Neutrophil Death in Sepsis. Frontiers in Immunology, 13, Article 963955. https://doi.org/10.3389/fimmu.2022.963955 |
[5] | Matthay, M.A., Zemans, R.L., Zimmerman, G.A., Arabi, Y.M., Beitler, J.R., Mercat, A., et al. (2019) Acute Respiratory Distress Syndrome. Nature Reviews Disease Primers, 5, Article No. 18. https://doi.org/10.1038/s41572-019-0069-0 |
[6] | Wang, Y., Zhu, C., Li, P., Liu, Q., Li, H., Yu, C., et al. (2023) The Role of G Protein-Coupled Receptor in Neutrophil Dysfunction during Sepsis-Induced Acute Respiratory Distress Syndrome. Frontiers in Immunology, 14, Article 1112196. https://doi.org/10.3389/fimmu.2023.1112196 |
[7] | Hidalgo, A., Libby, P., Soehnlein, O., Aramburu, I.V., Papayannopoulos, V. and Silvestre-Roig, C. (2021) Neutrophil Extracellular Traps: From Physiology to Pathology. Cardiovascular Research, 118, 2737-2753. https://doi.org/10.1093/cvr/cvab329 |
[8] | Wen, S.W., Shim, R., Hall, P., Bedo, J., Wilson, J.L., Nicholls, A.J., et al. (2022) Lung Imaging Reveals Stroke-Induced Impairment in Pulmonary Intravascular Neutrophil Function, a Response Exacerbated with Aging. The Journal of Immunology, 208, 2019-2028. https://doi.org/10.4049/jimmunol.2100997 |
[9] | Islam, M.M. and Takeyama, N. (2023) Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. International Journal of Molecular Sciences, 24, Article 15805. https://doi.org/10.3390/ijms242115805 |
[10] | Fuchs, T.A., Brill, A. and Wagner, D.D. (2012) Neutrophil Extracellular Trap (NET) Impact on Deep Vein Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1777-1783. https://doi.org/10.1161/atvbaha.111.242859 |
[11] | Kuang, L., Wu, Y., Shu, J., Yang, J., Zhou, H. and Huang, X. (2024) Pyroptotic Macrophage-Derived Microvesicles Accelerate Formation of Neutrophil Extracellular Traps via GSDMD-N-Expressing Mitochondrial Transfer during Sepsis. International Journal of Biological Sciences, 20, 733-750. https://doi.org/10.7150/ijbs.87646 |
[12] | Balamurugan, K. (2015) HIF‐1 at the Crossroads of Hypoxia, Inflammation, and Cancer. International Journal of Cancer, 138, 1058-1066. https://doi.org/10.1002/ijc.29519 |
[13] | Qiu, B., Yuan, P., Du, X., Jin, H., Du, J. and Huang, Y. (2023) Hypoxia Inducible Factor-1α Is an Important Regulator of Macrophage Biology. Heliyon, 9, e17167. https://doi.org/10.1016/j.heliyon.2023.e17167 |
[14] | Bandarra, D., Biddlestone, J., Mudie, S., Muller, H.A. and Rocha, S. (2014) HIF-1α Restricts NF-κB Dependent Gene Expression to Control Innate Immunity Signals. Disease Models & Mechanisms, 8, 169-181. https://doi.org/10.1242/dmm.017285 |
[15] | Shimoda, L.A., Fallon, M., Pisarcik, S., Wang, J. and Semenza, G.L. (2006) HIF-1 Regulates Hypoxic Induction of NHE1 Expression and Alkalinization of Intracellular Ph in Pulmonary Arterial Myocytes. American Journal of Physiology-Lung Cellular and Molecular Physiology, 291, L941-L949. https://doi.org/10.1152/ajplung.00528.2005 |
[16] | Zhang, J., Shao, Y., Wu, J., Zhang, J., Xiong, X., Mao, J., et al. (2025) Dysregulation of Neutrophil in Sepsis: Recent Insights and Advances. Cell Communication and Signaling, 23, Article No. 87. https://doi.org/10.1186/s12964-025-02098-y |
[17] | Basheeruddin, M. and Qausain, S. (2024) Hypoxia-Inducible Factor 1-α (HIF-1α): An Essential Regulator in Cellular Metabolic Control. Cureus, 16, e63852. https://doi.org/10.7759/cureus.63852 |
[18] | Burczyk, G., Cichon, I. and Kolaczkowska, E. (2022) Itaconate Suppresses Formation of Neutrophil Extracellular Traps (NETs): Involvement of Hypoxia-Inducible Factor 1α (HIF-1α) and Heme Oxygenase (HO-1). Frontiers in Immunology, 13, Article 864638. https://doi.org/10.3389/fimmu.2022.864638 |
[19] | Peyssonnaux, C., Cejudo-Martin, P., Doedens, A., Zinkernagel, A.S., Johnson, R.S. and Nizet, V. (2007) Cutting Edge: Essential Role of Hypoxia Inducible Factor-1α in Development of Lipopolysaccharide-Induced Sepsis. The Journal of Immunology, 178, 7516-7519. https://doi.org/10.4049/jimmunol.178.12.7516 |
[20] | Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. https://doi.org/10.1016/s0140-6736(19)32989-7 |
[21] | Sol, A., Skvirsky, Y., Blotnick, E., Bachrach, G. and Muhlrad, A. (2016) Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity. Frontiers in Microbiology, 7, Article 1248. https://doi.org/10.3389/fmicb.2016.01248 |
[22] | Wang, C., Wei, Z., Han, Z., Wang, J., Zhang, X., Wang, Y., et al. (2019) Neutrophil Extracellular Traps Promote Cadmium Chloride-Induced Lung Injury in Mice. Environmental Pollution, 254, Article ID: 113021. https://doi.org/10.1016/j.envpol.2019.113021 |