全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

药物与道路交通事故的相关性:一项基于FAERS数据库的探索性研究
Association between Medications and Road Traffic Accidents: An Exploratory Study Based on the FDA Adverse Event Reporting System (FAERS) Database

DOI: 10.12677/acm.2025.1561934, PP. 1937-1950

Keywords: 道路交通事故,药物警戒,不良事件,美国食品药品监督管理局不良事件报告系统数据库(FAERS数据库),比例失衡分析
Road Traffic Accident
, Pharmacovigilance, Adverse Event, FAERS Database, Disproportionality Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:减少道路交通事故(RTAs)是维护公共卫生的重大挑战。在众多风险因素中,药物的影响逐渐引起公众关注,但该领域研究仍显不足。本研究利用美国食品药品监督管理局(FDA)不良事件报告系统(FDA Adverse Event Reporting System, FAERS)中与RTAs相关的报告,评估各类药物与RTAs的关联性及特征。方法:研究提取了FAERS数据库中2004年第一季度至2023年第三季度由医疗专业人员提交的报告,并将药物判定为导致RTAs的主要嫌疑因素。通过描述性分析总结人群临床特征,采用报告比值比(ROR)评估关联性,运用Weibull形状参数检验评价潜伏时间特征,并基于性别进行亚组分析。结果:纳入研究的报告中,女性比例高于男性。前30种药物的报告量范围为56至517例,ROR值介于0.48至13.26之间。25种药物符合ROR显著性标准,且潜伏时间特征呈现差异。研究还发现,男性与女性显著药物列表的ROR前三位药物相同,但有4种药物在两者列表中均不显著。结论:本研究基于FAERS数据库提供了与RTAs最常关联的药物清单,为道路交通、药品监管机构及医疗专业人员提供参考依据。
Objective: Reducing road traffic accidents (RTAs) is a significant challenge in maintaining public health. Among numerous risk factors, the impact of medications has gradually garnered public attention; however, research in this area remains insufficient. This study evaluated the association and characteristics of various medications with RTAs using reports related to RTAs in the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. Methods: This study extracted reports submitted by medical professionals from FAERS database from Q1 2004 to Q3 2023, and identified medications as the primary suspects leading to RTAs. It summarized the clinical characteristics of the population through descriptive analysis and assessed associations using the reporting odds ratio (ROR). The time-to-onset characteristics were evaluated using the Weibull shape parameter test, and a subgroup analysis based on sex was also conducted. Results: Among the reports included in the study, a higher proportion were females than males. For the top 30 medications, the number of reports ranged from 56 to 517, with ROR values ranging from 0.48 to 13.26. Twenty-five medications met the significance criteria according to the ROR and exhibited variations in time-to-onset characteristics. The study also found that the top three medications by ROR value were the same in both the male and female lists of significant medications, with four medications being non-significant in both lists. Conclusions: This study provides a list of medications most commonly associated with RTAs based on the FAERS database, offering a reference for road traffic and pharmaceutical regulatory authorities and medical professionals.

References

[1]  WHO (2023) Global Status Report on Road Safety 2023. 81.
[2]  Drummer, O.H., Gerostamoulos, J., Batziris, H., Chu, M., Caplehorn, J., Robertson, M.D., et al. (2004) The Involvement of Drugs in Drivers of Motor Vehicles Killed in Australian Road Traffic Crashes. Accident Analysis & Prevention, 36, 239-248.
https://doi.org/10.1016/s0001-4575(02)00153-7
[3]  Orriols, L., Delorme, B., Gadegbeku, B., Tricotel, A., Contrand, B., Laumon, B., et al. (2010) Prescription Medicines and the Risk of Road Traffic Crashes: A French Registry-Based Study. PLOS Medicine, 7, e1000366.
https://doi.org/10.1371/journal.pmed.1000366
[4]  Molero, Y., Larsson, H., D’Onofrio, B.M., Sharp, D.J. and Fazel, S. (2019) Associations between Gabapentinoids and Suicidal Behaviour, Unintentional Overdoses, Injuries, Road Traffic Incidents, and Violent Crime: Population Based Cohort Study in Sweden. BMJ, 365, Article l2147.
https://doi.org/10.1136/bmj.l2147
[5]  Engeland, A., Skurtveit, S. and Mørland, J. (2007) Risk of Road Traffic Accidents Associated with the Prescription of Drugs: A Registry-Based Cohort Study. Annals of Epidemiology, 17, 597-602.
https://doi.org/10.1016/j.annepidem.2007.03.009
[6]  Bachs, L., Engeland, A., Mørland, J. and Skurtveit, S. (2009) The Risk of Motor Vehicle Accidents Involving Drivers with Prescriptions for Codeine or Tramadol. Clinical Pharmacology & Therapeutics, 85, 596-599.
https://doi.org/10.1038/clpt.2009.14
[7]  Chihuri, S. and Li, G. (2019) Use of Prescription Opioids and Initiation of Fatal 2-Vehicle Crashes. JAMA Network Open, 2, e188081.
https://doi.org/10.1001/jamanetworkopen.2018.8081
[8]  Dassanayake, T., Michie, P., Carter, G. and Jones, A. (2011) Effects of Benzodiazepines, Antidepressants and Opioids on Driving. Drug Safety, 34, 125-156.
https://doi.org/10.2165/11539050-000000000-00000
[9]  Orriols, L., Salmi, L., Philip, P., Moore, N., Delorme, B., Castot, A., et al. (2009) The Impact of Medicinal Drugs on Traffic Safety: A Systematic Review of Epidemiological Studies. Pharmacoepidemiology and Drug Safety, 18, 647-658.
https://doi.org/10.1002/pds.1763
[10]  Gomes, T., Redelmeier, D.A., Juurlink, D.N., Dhalla, I.A., Camacho, X. and Mamdani, M.M. (2013) Opioid Dose and Risk of Road Trauma in Canada. JAMA Internal Medicine, 173, 196-201.
https://doi.org/10.1001/2013.jamainternmed.733
[11]  Meek, I.L., Van de Laar, M.A.F.J. and E. Vonkeman, H. (2010) Non-Steroidal Anti-Inflammatory Drugs: An Overview of Cardiovascular Risks. Pharmaceuticals, 3, 2146-2162.
https://doi.org/10.3390/ph3072146
[12]  Cox, D.J., Ford, D., Gonder-Frederick, L., Clarke, W., Mazze, R., Weinger, K., et al. (2009) Driving Mishaps among Individuals with Type 1 Diabetes. Diabetes Care, 32, 2177-2180.
https://doi.org/10.2337/dc08-1510
[13]  McGwin, G. (2000) Relations among Chronic Medical Conditions, Medications, and Automobile Crashes in the Elderly: A Population-Based Case-Control Study. American Journal of Epidemiology, 152, 424-431.
https://doi.org/10.1093/aje/152.5.424
[14]  Carr, D.B., Beyene, K., Doherty, J., Murphy, S.A., Johnson, A.M., Domash, H., et al. (2023) Medication and Road Test Performance among Cognitively Healthy Older Adults. JAMA Network Open, 6, e2335651.
https://doi.org/10.1001/jamanetworkopen.2023.35651
[15]  Tonellato, D.J., Ransohoff, J.R., Nash, C., Melanson, S.E.F., Petrides, A.K., Tolan, N.V., et al. (2021) Traumatic Pedestrian and Bicyclist Injuries Associated with Intoxication. The American Journal of Emergency Medicine, 45, 192-195.
https://doi.org/10.1016/j.ajem.2020.08.024
[16]  Jedlowski, P.M., Jedlowski, M.F. and Fazel, M.T. (2021) DPP-4 Inhibitors and Increased Reporting Odds of Bullous Pemphigoid: A Pharmacovigilance Study of the FDA Adverse Event Reporting System (FAERS) from 2006 to 2020. American Journal of Clinical Dermatology, 22, 891-900.
https://doi.org/10.1007/s40257-021-00625-4
[17]  Woods, R.H. (2022) Potential Cerebrovascular Accident Signal for Risankizumab: A Disproportionality Analysis of the FDA Adverse Event Reporting System (FAERS). British Journal of Clinical Pharmacology, 89, 2386-2395.
https://doi.org/10.1111/bcp.15581
[18]  Kumar, A. (2019) The Newly Available FAERS Public Dashboard: Implications for Health Care Professionals. Hospital Pharmacy, 54, 75-77.
https://doi.org/10.1177/0018578718795271
[19]  Huang, L., Guo, T., Zalkikar, J.N. and Tiwari, R.C. (2014) A Review of Statistical Methods for Safety Surveillance. Therapeutic Innovation & Regulatory Science, 48, 98-108.
https://doi.org/10.1177/2168479013514236
[20]  Anand, K., Ensor, J., Trachtenberg, B. and Bernicker, E.H. (2019) Osimertinib-Induced Cardiotoxicity. JACC: CardioOncology, 1, 172-178.
https://doi.org/10.1016/j.jaccao.2019.10.006
[21]  Rothman, K.J., Lanes, S. and Sacks, S.T. (2004) The Reporting Odds Ratio and Its Advantages over the Proportional Reporting Ratio. Pharmacoepidemiology and Drug Safety, 13, 519-523.
https://doi.org/10.1002/pds.1001
[22]  Cornelius, V.R., Sauzet, O. and Evans, S.J.W. (2012) A Signal Detection Method to Detect Adverse Drug Reactions Using a Parametric Time-to-Event Model in Simulated Cohort Data. Drug Safety, 35, 599-610.
https://doi.org/10.2165/11599740-000000000-00000
[23]  Dang, A., Garg, A. and Rataboli, P.V. (2011) Role of Zolpidem in the Management of Insomnia. CNS Neuroscience & Therapeutics, 17, 387-397.
https://doi.org/10.1111/j.1755-5949.2010.00158.x
[24]  Shirani, A. and Stüve, O. (2018) Natalizumab: Perspectives from the Bench to Bedside. Cold Spring Harbor Perspectives in Medicine, 8, a029066.
https://doi.org/10.1101/cshperspect.a029066
[25]  Fisa, R., Musukuma, M., Sampa, M., Musonda, P. and Young, T. (2022) Effects of Interventions for Preventing Road Traffic Crashes: An Overview of Systematic Reviews. BMC Public Health, 22, Article No. 513.
https://doi.org/10.1186/s12889-021-12253-y
[26]  Riedel, W.J., Vermeeren, A., Van Boxtel, M.P.J., Vuurman, E.F.P.M., Verhey, F.R.J., Jolles, J., et al. (1998) Mechanisms of Drug-Induced Driving Impairment: A Dimensional Approach. Human Psychopharmacology: Clinical and Experimental, 13, S49-S63.
https://doi.org/10.1002/(sici)1099-1077(1998110)13:2+3.3.co;2-t
[27]  Orriols, L., Philip, P., Moore, N., Castot, A., Gadegbeku, B., Delorme, B., et al. (2011) Benzodiazepine-Like Hypnotics and the Associated Risk of Road Traffic Accidents. Clinical Pharmacology & Therapeutics, 89, 595-601.
https://doi.org/10.1038/clpt.2011.3
[28]  Yang, B.R., Kim, Y., Kim, M., Jung, S., Choi, N., Hwang, B., et al. (2018) Prescription of Zolpidem and the Risk of Fatal Motor Vehicle Collisions: A Population-Based, Case-Crossover Study from South Korea. CNS Drugs, 32, 593-600.
https://doi.org/10.1007/s40263-018-0520-x
[29]  Gustavsen, I., Bramness, J.G., Skurtveit, S., Engeland, A., Neutel, I. and Mørland, J. (2008) Road Traffic Accident Risk Related to Prescriptions of the Hypnotics Zopiclone, Zolpidem, Flunitrazepam and Nitrazepam. Sleep Medicine, 9, 818-822.
https://doi.org/10.1016/j.sleep.2007.11.011
[30]  U.S. Food & Drug Administration (2023) FDA Drug Safety Communication: FDA Approves New Label Changes and Dosing for Zolpidem Products and a Recommendation to Avoid Driving the Day after Using Ambien CR.
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-approves-new-label-changes-and-dosing-zolpidem-products-and
[31]  Medicines and Healthcare Products Regulatory Agency (2014) Zolpidem: Risk of Drowsiness and Reduced Driving Ability.
https://www.gov.uk/drug-safety-update/zolpidem-risk-of-drowsiness-and-reduced-driving-ability
[32]  Schumann, J., Perkins, M., Dietze, P., Nambiar, D., Mitra, B., Gerostamoulos, D., et al. (2021) The Prevalence of Alcohol and Other Drugs in Fatal Road Crashes in Victoria, Australia. Accident Analysis & Prevention, 153, Article 105905.
https://doi.org/10.1016/j.aap.2020.105905
[33]  Zitoun, S., Baudouin, E., Corruble, E., Vidal, J., Becquemont, L. and Duron, E. (2022) Use of Potentially Driver-Impairing Drugs among Older Drivers. BMC Geriatrics, 22, Article No. 4.
https://doi.org/10.1186/s12877-021-02726-5
[34]  Kriikku, P., Wilhelm, L., Rintatalo, J., Hurme, J., Kramer, J. and Ojanperä, I. (2014) Pregabalin Serum Levels in Apprehended Drivers. Forensic Science International, 243, 112-116.
https://doi.org/10.1016/j.forsciint.2014.06.030
[35]  Snead, O.C. and Gibson, K.M. (2005) γ-Hydroxybutyric Acid. New England Journal of Medicine, 352, 2721-2732.
https://doi.org/10.1056/nejmra044047
[36]  Liakoni, E., Dempsey, D.A., Meyers, M., Murphy, N.G., Fiorentino, D., Havel, C., et al. (2018) Effect of γ-Hydroxybutyrate (GHB) on Driving as Measured by a Driving Simulator. Psychopharmacology, 235, 3223-3232.
https://doi.org/10.1007/s00213-018-5025-2
[37]  Liakoni, E., Walther, F., Nickel, C.H. and Liechti, M.E. (2016) Presentations to an Urban Emergency Department in Switzerland Due to Acute γ-Hydroxybutyrate Toxicity. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, Article No. 107.
https://doi.org/10.1186/s13049-016-0299-z
[38]  Couper, F. and Logan, B. (2001) GHB and Driving Impairment. Journal of Forensic Sciences, 46, 919-923.
https://doi.org/10.1520/jfs15070j
[39]  Grymonprez, M., Simoens, C., Steurbaut, S., De Backer, T.L. and Lahousse, L. (2021) Worldwide Trends in Oral Anticoagulant Use in Patients with Atrial Fibrillation from 2010 to 2018: A Systematic Review and Meta-Analysis. EP Europace, 24, 887-898.
https://doi.org/10.1093/europace/euab303
[40]  Bennett, P.N., Bohm, C., Harasemiw, O., Brown, L., Gabrys, I., Jegatheesan, D., et al. (2021) Physical Activity and Exercise in Peritoneal Dialysis: International Society for Peritoneal Dialysis and the Global Renal Exercise Network Practice Recommendations. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 42, 8-24.
https://doi.org/10.1177/08968608211055290
[41]  Christou, G.A. and Kiortsis, D.N. (2015) The Efficacy and Safety of the Naltrexone/Bupropion Combination for the Treatment of Obesity: An Update. Hormones, 14, 370-375.
https://doi.org/10.14310/horm.2002.1600
[42]  Maglione, M.A., Raaen, L., Chen, C., Azhar, G., Shahidinia, N., Shen, M., et al. (2018) Effects of Medication Assisted Treatment (MAT) for Opioid Use Disorder on Functional Outcomes: A Systematic Review. Journal of Substance Abuse Treatment, 89, 28-51.
https://doi.org/10.1016/j.jsat.2018.03.001
[43]  Ray, W.A., Stein, C.M., Daugherty, J.R., Hall, K., Arbogast, P.G. and Griffin, M.R. (2002) COX-2 Selective Non-Steroidal Anti-Inflammatory Drugs and Risk of Serious Coronary Heart Disease. The Lancet, 360, 1071-1073.
https://doi.org/10.1016/s0140-6736(02)11131-7
[44]  VIOXX.
https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/21647_vioxx_lbl.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133