全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

盐霉素与CD47在神经胶质瘤治疗中的研究进展
Research Progress of Salinomycin and CD47 in the Treatment of Glioma

DOI: 10.12677/acm.2025.1561929, PP. 1899-1906

Keywords: 盐霉素,CD47,神经胶质瘤,肿瘤免疫,CD47-SIRPα信号通路
Salinomycin
, CD47, Glioma, Tumor Immunity, CD47-SIRPα Signaling Pathway

Full-Text   Cite this paper   Add to My Lib

Abstract:

神经胶质瘤是最常见的脑肿瘤,占恶性脑肿瘤的80%,尽管近来一直在不懈地探索神经胶质瘤的新治疗方法,但在改善患者生存结果方面进展有限。许多障碍阻碍了神经胶质瘤的有效治疗,包括免疫抑制性肿瘤微环境、血脑屏障和广泛的异质性。尽管存在这些挑战,但免疫疗法正在成为一种有前途的途径,可能为神经胶质瘤的治疗提供新的希望。巨噬细胞在肿瘤免疫治疗中发挥重要作用,CD47与巨噬细胞上的SIRP胞外结构域结合,从而抑制巨噬细胞的吞噬作用。近来研究发现,盐霉素在包括神经胶质瘤的各类肿瘤中具有抗肿瘤的效应。本文以此为目的,对盐霉素与CD47在神经胶质瘤治疗中的研究进行综述,旨在为盐霉素与CD47在神经胶质瘤的临床治疗过程中的应用和推广提供依据。
Glioma is the most common brain tumor, accounting for 80% of malignant brain tumors. Despite continuous exploration of new treatment methods for glioma, progress in improving patient survival outcomes has been limited. Many obstacles hinder effective treatment of glioblastoma, including immunosuppressive tumor microenvironment, blood-brain barrier, and widespread heterogeneity. Despite these challenges, immunotherapy is becoming a promising approach that may provide new hope for the treatment of glioblastoma. Macrophages play an important role in tumor immunotherapy, as CD47 binds to the extracellular domain of SIRP on macrophages, thereby inhibiting their phagocytic activity. Recent studies have found that salinomycin has anti-tumor effects in various types of tumors, including glioma. This article aims to review the research on the treatment of glioblastoma with streptomycin and CD47, providing a basis for the clinical application and promotion of streptomycin and CD47 in the treatment of glioblastoma.

References

[1]  曲琳卓, 关宏锏. 神经胶质瘤的免疫治疗[J]. 中国肿瘤生物治疗杂志, 2024, 31(6): 613-620.
[2]  仝津恺, 闫思翔, 张艳多, 等. 依赖于端粒延长替代机制的胶质瘤临床前模型及应用现状[J]. 生物化学与生物物理进展, 2024, 51(2): 269-275.
[3]  郝悦, 杨艺辉, 李婉, 等. 神经胶质母细胞瘤靶点及相关药物研究进展[J]. 现代肿瘤医学, 2024, 32(13): 2492-2497.
[4]  任子阳, 赵亚宁, 王一鸣, 等. 免疫检查点抑制剂在胶质瘤治疗中的作用机制与临床应用进展[J]. 中华神经外科疾病研究杂志, 2024, 18(5): 92-96.
[5]  朱明微, 刘鹏飞, 陈耀东, 等. 通过开放血脑肿瘤屏障治疗胶质母细胞瘤[J]. 实用肿瘤杂志, 2020, 35(4): 371-377.
[6]  叶镇宁, 吴正红, 张华清. 纳米递送系统介导的血脑屏障跨越策略和脑靶向药物递送研究进展[J]. 中国药科大学学报, 2024, 55(5): 590-602.
[7]  陈羽翔, 李卓骋, 高亮, 等. CD47在肾移植中的最新研究与展望[J]. 器官移植, 2024, 15(2): 282-288.
[8]  蒋曼, 郭君妍, 杜仲, 等. 靶向CD47/SIRPα信号轴免疫疗法联合治疗策略在恶性肿瘤治疗中的应用及其作用机制研究进展[J]. 山东医药, 2024, 64(9): 104-107.
[9]  张丝雨, 周琼. 靶向肿瘤相关巨噬细胞在癌症免疫治疗中的研究进展[J]. 广西医科大学学报, 2024, 41(11): 1549-1557.
[10]  张凯棋, 常绪生, 徐袁, 等. 基于CD47/信号调节蛋白α信号轴的肿瘤联合治疗策略[J]. 海军军医大学学报, 2023, 44(5): 602-608.
[11]  Zhang, C., Xu, M., He, S., et al. (2023) Checkpoint Nano-PROTACs for Activatable Cancer Photo-Immunotherapy. Advanced Materials, 35, e2208553.
[12]  Jia, X., Yan, B., Tian, X., Liu, Q., Jin, J., Shi, J., et al. (2021) CD47/SIRPα Pathway Mediates Cancer Immune Escape and Immunotherapy. International Journal of Biological Sciences, 17, 3281-3287.
https://doi.org/10.7150/ijbs.60782

[13]  Liu, J., Xavy, S., Mihardja, S., Chen, S., Sompalli, K., Feng, D., et al. (2020) Targeting Macrophage Checkpoint Inhibitor SIRPα for Anticancer Therapy. JCI Insight, 5, e134728.
https://doi.org/10.1172/jci.insight.134728

[14]  Qu, T., Zhong, T., Pang, X., Huang, Z., Jin, C., Wang, Z.M., et al. (2022) Ligufalimab, a Novel Anti-CD47 Antibody with No Hemagglutination Demonstrates Both Monotherapy and Combo Antitumor Activity. Journal for ImmunoTherapy of Cancer, 10, e005517.
https://doi.org/10.1136/jitc-2022-005517

[15]  Biedermann, A., Patra-Kneuer, M., Mougiakakos, D., Büttner-Herold, M., Mangelberger-Eberl, D., Berges, J., et al. (2024) Blockade of the CD47/SIRPα Checkpoint Axis Potentiates the Macrophage-Mediated Anti-Tumor Efficacy of Tafasitamab. Haematologica, 109, 3928-3940.
https://doi.org/10.3324/haematol.2023.284795

[16]  冯彩团, 陈卿奇, 郭殿华, 等. 葫芦巴碱调节CD47/SIRPα信号通路对胃癌细胞增殖、凋亡和免疫逃逸的影响[J]. 现代肿瘤医学, 2024, 32(13): 2346-2353.
[17]  Yamada-Hunter, S.A., Theruvath, J., McIntosh, B.J., et al. (2024) Engineered CD47 Protects T Cells for Enhanced Antitumour Immunity. Nature, 630, 457-465.
[18]  Rao, L., Zhao, S.K., Wen, C., et al. (2020) Activating Macrophage-Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles. Advanced Materials, 32, e2004853.
[19]  Gholamin, S., Youssef, O.A., Rafat, M., Esparza, R., Kahn, S., Shahin, M., et al. (2019) Irradiation or Temozolomide Chemotherapy Enhances Anti-Cd47 Treatment of Glioblastoma. Innate Immunity, 26, 130-137.
https://doi.org/10.1177/1753425919876690

[20]  Martínez-Sanz, P., Hoogendijk, A.J., Verkuijlen, P.J.J.H., et al. (2021) CD47-SIRPα Checkpoint Inhibition Enhances Neutrophil-Mediated Killing of Dinutuximab-Opsonized Neuroblastoma Cells. Cancers, 13, Article 4261.
[21]  Hsu, S.P.C., Chen, Y.C., Chiang, H.C., et al. (2020) Rapamycin and Hydroxychloroquine Combination Alters Macrophage Polarization and Sensitizes Glioblastoma to Immune Checkpoint Inhibitors. Journal of Neuro-Oncology, 146, 417-426.
[22]  Du, L., Su, Z., Wang, S., Meng, Y., Xiao, F., Xu, D., et al. (2023) EGFR‐Induced and c‐Src‐Mediated CD47 Phosphorylation Inhibits TRIM21‐Dependent Polyubiquitylation and Degradation of CD47 to Promote Tumor Immune Evasion. Advanced Science, 10, e2206380.
https://doi.org/10.1002/advs.202206380

[23]  Hu, J., Dong, F., He, Y., Xia, X., Cheng, F., Chen, S., et al. (2022) LRIG2 Promotes Glioblastoma Progression by Modulating Innate Antitumor Immunity through Macrophage Infiltration and Polarization. Journal for ImmunoTherapy of Cancer, 10, e004452.
https://doi.org/10.1136/jitc-2021-004452

[24]  Jiang, N., Xie, B., Xiao, W., Fan, M., Xu, S., Duan, Y., et al. (2022) Fatty Acid Oxidation Fuels Glioblastoma Radioresistance with CD47-Mediated Immune Evasion. Nature Communications, 13, Article No. 1511.
https://doi.org/10.1038/s41467-022-29137-3

[25]  Zhang, P., Rashidi, A., Zhao, J., et al. (2023) STING agonist-Loaded, CD47/PD-L1-Targeting Nanoparticles Potentiate Antitumor Immunity and Radiotherapy for Glioblastoma. Nature Communications, 14, Article No. 1610.
[26]  Zhou, Y., Guo, Y., Chen, L., Zhang, X., Wu, W., Yang, Z., et al. (2022) Co-Delivery of Phagocytosis Checkpoint and STING Agonist by a Trojan Horse Nanocapsule for Orthotopic Glioma Immunotherapy. Theranostics, 12, 5488-5503.
https://doi.org/10.7150/thno.73104

[27]  Ye, L., Lv, W., He, W., Li, S., Min, Z., Gong, L., et al. (2023) Reduced Malignant Glioblastoma Recurrence Post-Resection through the Anti-CD47 Antibody and Temozolomide Co-Embedded In-Situ Hydrogel System. Journal of Controlled Release, 359, 224-233.
https://doi.org/10.1016/j.jconrel.2023.05.046

[28]  郭松松, 孙羽, 杨怡萱, 等. 盐霉素在白色链霉菌中的生物合成及代谢调控研究进展[J]. 微生物学通报, 2024, 51(3): 732-742.
[29]  尹学青, 董哲斌, 邬恒淼, 等. 盐霉素通过Na+, K+-ATP酶诱导脂肪干细胞和肝癌干细胞胀亡的作用机制研究[J]. 浙江医学, 2024, 46(18): 1925-1932.
[30]  Wang, H., Zhang, H., Zhu, Y., Wu, Z., Cui, C. and Cai, F. (2021) Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications. Frontiers in Oncology, 11, Article 654428.
https://doi.org/10.3389/fonc.2021.654428

[31]  曹露, 吴开祥, 张亚, 等. 盐霉素对乳腺癌干细胞增殖和凋亡的影响及其作用机制[J]. 山东医药, 2021, 61(25): 41-45.
[32]  何朵, 吴博, 赵菊梅. 盐霉素通过靶向调控ALDH影响三阴性乳腺癌细胞MDA-MB-231增殖和凋亡[J]. 中国癌症防治杂志, 2020, 12(2): 162-168.
[33]  Cosialls, E., Pacreau, E., Duruel, C., Ceccacci, S., Elhage, R., Desterke, C., et al. (2023) mTOR Inhibition Suppresses Salinomycin-Induced Ferroptosis in Breast Cancer Stem Cells by Ironing Out Mitochondrial Dysfunctions. Cell Death & Disease, 14, Article No. 744.
https://doi.org/10.1038/s41419-023-06262-5

[34]  Savaee, M., Bakhshi, A., Yaghoubi, F., Pourrajab, F. and Goodarzvand Chegini, K. (2022) Evaluating the Effects of Separate and Concomitant Use of MK-2206 and Salinomycin on Prostate Cancer Cell Line. Reports of Biochemistry and Molecular Biology, 11, 157-165.
https://doi.org/10.52547/rbmb.11.1.157

[35]  He, D., Wu, B., Du, J., Li, L. and Zhao, J. (2022) Synergistic Inhibition of the Growth of MDA-MB-231 Cells in Triple-Negative Breast Cancer by Salinomycin Combined with 17-AAG and Its Mechanism. Oncology Letters, 23, Article No. 138.
https://doi.org/10.3892/ol.2022.13258

[36]  Shen, H., Sun, C.C., Kang, L., Tan, X., Shi, P., Wang, L., et al. (2021) Low-Dose Salinomycin Inhibits Breast Cancer Metastasis by Repolarizing Tumor Hijacked Macrophages toward the M1 Phenotype. European Journal of Pharmaceutical Sciences, 157, Article ID: 105629.
https://doi.org/10.1016/j.ejps.2020.105629

[37]  乔健英, 田金成, 曹相玫. 盐霉素对胶质母细胞瘤U87细胞抑制作用的研究[J]. 生物医学, 2021, 11(2): 55-62.
[38]  Magrath, J., Raney, W. and Kim, Y. (2020) In Vitro Demonstration of Salinomycin as a Novel Chemotherapeutic Agent for the Treatment of Sox2-Positive Glioblastoma Cancer Stem Cells. Oncology Reports, 44, 777-785.
https://doi.org/10.3892/or.2020.7642

[39]  Asik, A., Ay, N.P.O., Bagca, B.G., Caglar, H.O., Gunduz, C. and Avci, C.B. (2020) Combination of Salinomycin and AZD3463 Reveals Synergistic Effect on Reducing the Viability of T98G Glioblastoma Cells. Anti-Cancer Agents in Medicinal Chemistry, 20, 2267-2273.
https://doi.org/10.2174/1871520620666200721121517

[40]  Lim, Y.C., Ensbey, K.S., Offenhäuser, C., et al. (2020) Simultaneous Targeting of DNA Replication and Homologous Recombination in Glioblastoma with a Polyether Ionophore. Neuro-Oncology, 22, 216-228.
[41]  Norouzi, M., Firouzi, J., Sodeifi, N., Ebrahimi, M. and Miller, D.W. (2021) Salinomycin-Loaded Injectable Thermosensitive Hydrogels for Glioblastoma Therapy. International Journal of Pharmaceutics, 598, Article ID: 120316.
https://doi.org/10.1016/j.ijpharm.2021.120316

[42]  Liang, F., Zhu, L., Wang, C., Yang, Y. and He, Z. (2021) BSA-MnO2-SAL Multifunctional Nanoparticle-Mediated M1 Macrophages Polarization for Glioblastoma Therapy. RSC Advances, 11, 35331-35341.
https://doi.org/10.1039/d1ra06705b

[43]  Bozzato, E., Tsakiris, N., Paquot, A., Muccioli, G.G., Bastiancich, C. and Préat, V. (2022) Dual-Drug Loaded Nanomedicine Hydrogel as a Therapeutic Platform to Target Both Residual Glioblastoma and Glioma Stem Cells. International Journal of Pharmaceutics, 628, Article ID: 122341.
https://doi.org/10.1016/j.ijpharm.2022.122341

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133