|
等离子体活化水的杀菌作用及机制的相关医学研究进展
|
Abstract:
等离子体活化水(plasma-activated water, PAW)是一种使用常压冷等离子体处理的水或溶液,PAW作为一种新型杀菌技术,已被证实是高效、环保且对多种微生物无耐药性的。本文综述了等离子体活化水的杀菌作用,包括对多种细菌、病毒、真菌等微生物的杀灭效果及其影响因素,并探讨了其杀菌机制,主要涉及氧化应激、酸化作用、物理效应等方面。PAW凭借其高效、无耐药性及安全性优势,在院内感染防控、创面处理及医疗器械灭菌等医学场景展现出重要应用价值,其临床转化研究将成为未来重点方向。
Plasma-activated water (PAW), generated by treating water or aqueous solutions with atmospheric cold plasma under ambient conditions, has emerged as a novel disinfection technology. PAW has been demonstrated to be highly effective, environmentally friendly, and non-inductive of microbial resistance against a broad spectrum of pathogens. This review systematically summarizes the antibacterial effects of PAW, including its microbicidal efficacy against diverse microorganisms (bacteria, viruses, and fungi) and key influencing factors. Furthermore, the underlying bactericidal mechanisms are elucidated, focusing on oxidative stress, acidification effects, and physical interactions. Notably, PAW exhibits significant potential for medical applications such as hospital-acquired infection control, wound management, and medical device sterilization, owing to its high efficiency, absence of resistance development, and biosafety. Future research should prioritize clinical translation studies to advance its practical implementation in healthcare settings.
[1] | Esposito, S., Leone, S. and Noviello, S. (2005) Management of Severe Bacterial Infections. Expert Review of Anti-infective Therapy, 3, 593-600. https://doi.org/10.1586/14787210.3.4.593 |
[2] | Eickelberg, G., Sanchez-Pinto, L.N., Kline, A.S. and Luo, Y. (2023) Transportability of Bacterial Infection Prediction Models for Critically Ill Patients. Journal of the American Medical Informatics Association, 31, 98-108. https://doi.org/10.1093/jamia/ocad174 |
[3] | Ritchie, D.J., Alexander, B.T. and Finnegan, P.M. (2009) New Antimicrobial Agents for Use in the Intensive Care Unit. Infectious Disease Clinics of North America, 23, 665-681. https://doi.org/10.1016/j.idc.2009.04.010 |
[4] | Dancer, S.J. (2014) Controlling Hospital-Acquired Infection: Focus on the Role of the Environment and New Technologies for Decontamination. Clinical Microbiology Reviews, 27, 665-690. https://doi.org/10.1128/cmr.00020-14 |
[5] | Zhang, G., Li, W., Chen, S., Zhou, W. and Chen, J. (2020) Problems of Conventional Disinfection and New Sterilization Methods for Antibiotic Resistance Control. Chemosphere, 254, Article ID: 126831. https://doi.org/10.1016/j.chemosphere.2020.126831 |
[6] | Kim, S. and Kim, C. (2021) Applications of Plasma-Activated Liquid in the Medical Field. Biomedicines, 9, Article No. 1700. https://doi.org/10.3390/biomedicines9111700 |
[7] | Oliveira, M., Fernández-Gómez, P., Álvarez-Ordóñez, A., Prieto, M. and López, M. (2022) Plasma-Activated Water: A Cutting-Edge Technology Driving Innovation in the Food Industry. Food Research International, 156, Article ID: 111368. https://doi.org/10.1016/j.foodres.2022.111368 |
[8] | Herianto, S., Hou, C., Lin, C. and Chen, H. (2020) Nonthermal Plasma‐Activated Water: A Comprehensive Review of This New Tool for Enhanced Food Safety and Quality. Comprehensive Reviews in Food Science and Food Safety, 20, 583-626. https://doi.org/10.1111/1541-4337.12667 |
[9] | Droste, N.C., Hummert, M., Leenders, P., Mellmann, A., Becker, K. and Kuczius, T. (2024) Plasma-Activated Tap Water with Oxidative Potential Has an Inactivating Effect on Microbiological Contaminants in Aqueous Suspensions. Pathogens, 13, Article No. 535. https://doi.org/10.3390/pathogens13070535 |
[10] | Bălan, G.G., Roșca, I., Ursu, E., Doroftei, F., Bostănaru, A., Hnatiuc, E., et al. (2018) Plasma-Activated Water: A New and Effective Alternative for Duodenoscope Reprocessing. Infection and Drug Resistance, 11, 727-733. https://doi.org/10.2147/idr.s159243 |
[11] | Liu, J., Yang, C., Cheng, C., Zhang, C., Zhao, J. and Fu, C. (2021) In Vitro Antimicrobial Effect and Mechanism of Action of Plasma-Activated Liquid on Planktonic Neisseria gonorrhoeae. Bioengineered, 12, 4605-4619. https://doi.org/10.1080/21655979.2021.1955548 |
[12] | Rotondo, P.R., Aceto, D., Ambrico, M., Stellacci, A.M., Faretra, F., De Miccolis Angelini, R.M., et al. (2025) Physicochemical Properties of Plasma-Activated Water and Associated Antimicrobial Activity against Fungi and Bacteria. Scientific Reports, 15, Article No. 5536. https://doi.org/10.1038/s41598-025-88369-7 |
[13] | Rahimi-Verki, N., Shapoorzadeh, A., Razzaghi-Abyaneh, M., Atyabi, S., Shams-Ghahfarokhi, M., Jahanshiri, Z., et al. (2016) Cold Atmospheric Plasma Inhibits the Growth of Candida Albicans by Affecting Ergosterol Biosynthesis and Suppresses the Fungal Virulence Factors in Vitro. Photodiagnosis and Photodynamic Therapy, 13, 66-72. https://doi.org/10.1016/j.pdpdt.2015.12.007 |
[14] | Yao, Q., Xu, H., Zhuang, J., Cui, D., Ma, R. and Jiao, Z. (2023) Inhibition of Fungal Growth and Aflatoxin B1 Synthesis in Aspergillus flavus by Plasma-Activated Water. Foods, 12, Article No. 2490. https://doi.org/10.3390/foods12132490 |
[15] | Lee, G.J., Lamichhane, P., Ahn, S.J., Kim, S.H., Yewale, M.A., Choong, C.E., et al. (2021) Nitrate Capture Investigation in Plasma-Activated Water and Its Antifungal Effect on Cryptococcus pseudolongus Cells. International Journal of Molecular Sciences, 22, Article No. 12773. https://doi.org/10.3390/ijms222312773 |
[16] | Guo, L., Yao, Z., Yang, L., Zhang, H., Qi, Y., Gou, L., et al. (2021) Plasma-Activated Water: An Alternative Disinfectant for S Protein Inactivation to Prevent SARS-CoV-2 Infection. Chemical Engineering Journal, 421, Article ID: 127742. https://doi.org/10.1016/j.cej.2020.127742 |
[17] | Kaushik, N.K., Bhartiya, P., Kaushik, N., Shin, Y., Nguyen, L.N., Park, J.S., et al. (2023) Nitric-Oxide Enriched Plasma-Activated Water Inactivates 229E Coronavirus and Alters Antiviral Response Genes in Human Lung Host Cells. Bioactive Materials, 19, 569-580. https://doi.org/10.1016/j.bioactmat.2022.05.005 |
[18] | 刘雅夫, 符腾飞, 刘宸成, 等. 低温等离子体对金黄色葡萄球菌和铜绿假单胞菌的杀菌效果及动力学特性[J]. 现代食品科技, 2021, 37(12): 127-135. |
[19] | Weiss, M., Daeschlein, G., Kramer, A., Burchardt, M., Brucker, S., Wallwiener, D., et al. (2017) Virucide Properties of Cold Atmospheric Plasma for Future Clinical Applications. Journal of Medical Virology, 89, 952-959. https://doi.org/10.1002/jmv.24701 |
[20] | Lee, H.R., Lee, Y.S., You, Y.S., Huh, J.Y., Kim, K., Hong, Y.C., et al. (2022) Antimicrobial Effects of Microwave Plasma-Activated Water with Skin Protective Effect for Novel Disinfectants in Pandemic Era. Scientific Reports, 12, Article No. 5968. https://doi.org/10.1038/s41598-022-10009-1 |
[21] | Zhao, Y.M., Ojha, S., Burgess, C.M., et al. (2020) Inactivation Efficacy of Plasma-Activated Water: Influence of Plasma Treatment Time, Exposure Time and Bacterial Species. International Journal of Food Science & Technology, 56, 721-732. https://doi.org/10.1111/ijfs.14708 |
[22] | Wang, X.-Y., Qi, Z.-H., Song, Y., et al. (2016) Bacteria Sterilization Application by Using Plasma Activated Physiological Saline. Acta Physica Sinica, 65, Article 123301. https://doi.org/10.7498/aps.65.123301 |
[23] | Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, C., Weltmann, K. and von Woedtke, T. (2010) The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Processes and Polymers, 7, 250-257. https://doi.org/10.1002/ppap.200900077 |
[24] | Bai, Y., Idris Muhammad, A., Hu, Y., Koseki, S., Liao, X., Chen, S., et al. (2020) Inactivation Kinetics of Bacillus cereus Spores by Plasma Activated Water (PAW). Food Research International, 131, Article ID: 109041. https://doi.org/10.1016/j.foodres.2020.109041 |
[25] | Zhang, Q., Ma, R., Tian, Y., Su, B., Wang, K., Yu, S., et al. (2016) Sterilization Efficiency of a Novel Electrochemical Disinfectant against Staphylococcus aureus. Environmental Science & Technology, 50, 3184-3192. https://doi.org/10.1021/acs.est.5b05108 |
[26] | Tsoukou, E., Bourke, P. and Boehm, D. (2018) Understanding the Differences between Antimicrobial and Cytotoxic Properties of Plasma Activated Liquids. Plasma Medicine, 8, 299-320. https://doi.org/10.1615/PlasmaMed.2018028261 |
[27] | Zhao, Y., Patange, A., Sun, D. and Tiwari, B. (2020) Plasma‐Activated Water: Physicochemical Properties, Microbial Inactivation Mechanisms, Factors Influencing Antimicrobial Effectiveness, and Applications in the Food Industry. Comprehensive Reviews in Food Science and Food Safety, 19, 3951-3979. https://doi.org/10.1111/1541-4337.12644 |
[28] | Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J., et al. (2016) Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water Stored at Different Temperatures. Scientific Reports, 6, Article No. 28505. https://doi.org/10.1038/srep28505 |
[29] | Hadinoto, K., Yang, H., Zhang, T., Cullen, P.J., Prescott, S. and Trujillo, F.J. (2023) The Antimicrobial Effects of Mist Spraying and Immersion on Beef Samples with Plasma-Activated Water. Meat Science, 200, Article ID: 109165. https://doi.org/10.1016/j.meatsci.2023.109165 |
[30] | Zhao, Y., Ojha, S., Burgess, C.M., Sun, D. and Tiwari, B.K. (2020) Inactivation Efficacy and Mechanisms of Plasma Activated Water on Bacteria in Planktonic State. Journal of Applied Microbiology, 129, 1248-1260. https://doi.org/10.1111/jam.14677 |
[31] | Kamgang-Youbi, G., Herry, J., Brisset, J., Bellon-Fontaine, M., Doubla, A. and Naïtali, M. (2008) Impact on Disinfection Efficiency of Cell Load and of Planktonic/Adherent/Detached State: Case of Hafnia Alvei Inactivation by Plasma Activated Water. Applied Microbiology and Biotechnology, 81, 449-457. https://doi.org/10.1007/s00253-008-1641-9 |
[32] | Zheng, J. (2017) Inactivation of Staphylococcus aureus in Water by Pulsed Spark Discharge. Scientific Reports, 7, Article No. 10311. https://doi.org/10.1038/s41598-017-10784-2 |
[33] | Ryu, Y., Kim, Y., Lee, J., Shim, G., Uhm, H., Park, G., et al. (2013) Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma. PLOS ONE, 8, e66231. https://doi.org/10.1371/journal.pone.0066231 |
[34] | Traylor, M.J., Pavlovich, M.J., Karim, S., Hait, P., Sakiyama, Y., Clark, D.S., et al. (2011) Long-term Antibacterial Efficacy of Air Plasma-Activated Water. Journal of Physics D: Applied Physics, 44, Article ID: 472001. https://doi.org/10.1088/0022-3727/44/47/472001 |
[35] | Lukes, P., Clupek, M., Babicky, V. and Sunka, P. (2008) Ultraviolet Radiation from the Pulsed Corona Discharge in Water. Plasma Sources Science and Technology, 17, Article ID: 024012. https://doi.org/10.1088/0963-0252/17/2/024012 |
[36] | Špetlíková, E. (2010) Role of UV Radiation, Solution Conductivity and Pulse Repetition Frequency in the Bactericidal Effects during Pulse Corona Discharge in Water. |
[37] | Kurita, H., Haruta, N., Uchihashi, Y., Seto, T. and Takashima, K. (2020) Strand Breaks and Chemical Modification of Intracellular DNA Induced by Cold Atmospheric Pressure Plasma Irradiation. PLOS ONE, 15, e0232724. https://doi.org/10.1371/journal.pone.0232724 |
[38] | Wu, H., Sun, P., Feng, H., Zhou, H., Wang, R., Liang, Y., et al. (2012) Reactive Oxygen Species in a Non‐Thermal Plasma Microjet and Water System: Generation, Conversion, and Contributions to Bacteria Inactivation—An Analysis by Electron Spin Resonance Spectroscopy. Plasma Processes and Polymers, 9, 417-424. https://doi.org/10.1002/ppap.201100065 |
[39] | Wang, Z., Wang, X., Xu, S., Zhou, R., Zhang, M., Li, W., et al. (2024) Off-Site Production of Plasma-Activated Water for Efficient Disinfection: The Crucial Role of High Valence NO(x) and New Chemical Pathways. Water Research, 267, Article ID: 122541. https://doi.org/10.1016/j.watres.2024.122541 |
[40] | Sampaio, A.d.G., Chiappim, W., Milhan, N.V.M., Botan Neto, B., Pessoa, R. and Koga-Ito, C.Y. (2022) Effect of the Ph on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids. International Journal of Molecular Sciences, 23, Article No. 13893. https://doi.org/10.3390/ijms232213893 |
[41] | Lu, P., Boehm, D., Bourke, P. and Cullen, P.J. (2017) Achieving Reactive Species Specificity within Plasma‐Activated Water through Selective Generation Using Air Spark and Glow Discharges. Plasma Processes and Polymers, 14, Article ID: 1600207. https://doi.org/10.1002/ppap.201600207 |
[42] | Patange, A., Lu, P., Boehm, D., Cullen, P.J. and Bourke, P. (2019) Efficacy of Cold Plasma Functionalised Water for Improving Microbiological Safety of Fresh Produce and Wash Water Recycling. Food Microbiology, 84, Article ID: 103226. https://doi.org/10.1016/j.fm.2019.05.010 |
[43] | Nicol, M.J., Brubaker, T.R., Honish, B.J., Simmons, A.N., Kazemi, A., Geissel, M.A., et al. (2020) Antibacterial Effects of Low-Temperature Plasma Generated by Atmospheric-Pressure Plasma Jet Are Mediated by Reactive Oxygen Species. Scientific Reports, 10, Article No. 3066. https://doi.org/10.1038/s41598-020-59652-6 |
[44] | Guo, L., Xu, R., Zhao, Y., Liu, D., Liu, Z., Wang, X., et al. (2018) Gas Plasma Pre-Treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus. Frontiers in Microbiology, 9, Article No. 537. https://doi.org/10.3389/fmicb.2018.00537 |
[45] | Yang, L., Niyazi, G., Qi, Y., Yao, Z., Huang, L., Wang, Z., et al. (2021) Plasma-Activated Saline Promotes Antibiotic Treatment of Systemic Methicillin-Resistant Staphylococcus aureus Infection. Antibiotics, 10, Article No. 1018. https://doi.org/10.3390/antibiotics10081018 |
[46] | Nguyen, L., Lu, P., Boehm, D., Bourke, P., Gilmore, B.F., Hickok, N.J., et al. (2018) Cold Atmospheric Plasma Is a Viable Solution for Treating Orthopedic Infection: A Review. Biological Chemistry, 400, 77-86. https://doi.org/10.1515/hsz-2018-0235 |
[47] | Daeschlein, G., Napp, M., Lutze, S., Arnold, A., von Podewils, S., Guembel, D., et al. (2015) Skin and Wound Decontamination of Multidrug‐resistant Bacteria by Cold Atmospheric Plasma Coagulation. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 13, 143-149. https://doi.org/10.1111/ddg.12559 |
[48] | Braný, D., Dvorská, D., Halašová, E. and Škovierová, H. (2020) Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. International Journal of Molecular Sciences, 21, Article No. 2932. https://doi.org/10.3390/ijms21082932 |