全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2型糖尿病与骨质疏松症的研究进展
Research Progress on Type 2 Diabetes Mellitus and Osteoporosis

DOI: 10.12677/acm.2025.1561924, PP. 1854-1860

Keywords: 2型糖尿病,骨质疏松症,影响机制
Type 2 Diabetes Mellitus
, Osteoporosis, Influence Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,研究发现,与非糖尿病患者相比,2型糖尿病患者患骨质疏松症的风险增加,并且2型糖尿病人群中骨质疏松症的患病率正在逐年增高,2型糖尿病患者骨折风险显著增加,特别是髋部和腕部骨折。这可能与糖尿病使得骨折风险增加,骨折愈合延迟以及氧化应激、胰岛素抵抗等原因相关。本研究旨在探讨2型糖尿病与骨质疏松之间的关联,有助于更好地理解其病理机制,并为临床预防和治疗提供依据。
In recent years, it has been found that people with type 2 diabetes have an increased risk of osteoporosis compared to non-diabetics, and that the prevalence of osteoporosis in the type 2 diabetic population is increasing every year, with people with type 2 diabetes being at a significantly increased risk of fracture, particularly hip and wrist fractures. This may be related to the fact that diabetes makes the risk of fracture increased, delayed fracture healing as well as oxidative stress, insulin resistance and other reasons. The aim of this study is to investigate the association between type 2 diabetes mellitus and osteoporosis, which will help to better understand its pathomechanisms and provide a basis for clinical prevention and treatment.

References

[1]  Wang, L., Peng, W., Zhao, Z., Zhang, M., Shi, Z., Song, Z., et al. (2021) Prevalence and Treatment of Diabetes in China, 2013-2018. Journal of the American Medical Association, 326, Article 2498.
https://doi.org/10.1001/jama.2021.22208
[2]  Ensrud, K.E. and Crandall, C.J. (2017) Osteoporosis. Annals of Internal Medicine, 167, ITC17-ITC32.
https://doi.org/10.7326/aitc201708010
[3]  Wang, L., Yu, W., Yin, X., Cui, L., Tang, S., Jiang, N., et al. (2021) Prevalence of Osteoporosis and Fracture in China. JAMA Network Open, 4, e2121106.
https://doi.org/10.1001/jamanetworkopen.2021.21106
[4]  Hou, Y., Hou, X., Nie, Q., Xia, Q., Hu, R., Yang, X., et al. (2023) Association of Bone Turnover Markers with Type 2 Diabetes Mellitus and Microvascular Complications: A Matched Case-Control Study. Diabetes, Metabolic Syndrome and Obesity, 16, 1177-1192.
https://doi.org/10.2147/dmso.s400285
[5]  Gao, L., Liu, C., Hu, P., Wang, N., Bao, X., Wang, B., et al. (2022) The Role of Advanced Glycation End Products in Fracture Risk Assessment in Postmenopausal Type 2 Diabetic Patients. Frontiers in Endocrinology, 13, Article 1013397.
https://doi.org/10.3389/fendo.2022.1013397
[6]  Cavati, G., Pirrotta, F., Merlotti, D., Ceccarelli, E., Calabrese, M., Gennari, L., et al. (2023) Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification. Antioxidants, 12, Article 928.
https://doi.org/10.3390/antiox12040928
[7]  Zhang, W., Shen, X., Wan, C., Zhao, Q., Zhang, L., Zhou, Q., et al. (2012) Effects of Insulin and Insulin-Like Growth Factor 1 on Osteoblast Proliferation and Differentiation: Differential Signalling via Akt and Erk. Cell Biochemistry and Function, 30, 297-302.
https://doi.org/10.1002/cbf.2801
[8]  Sheu, A., Greenfield, J.R., White, C.P. and Center, J.R. (2023) Contributors to Impaired Bone Health in Type 2 Diabetes. Trends in Endocrinology & Metabolism, 34, 34-48.
https://doi.org/10.1016/j.tem.2022.11.003
[9]  Chen, R., Yang, C., Zhu, Q., Li, Y., Hu, H., Wang, D., et al. (2023) Comparison of the Effects of Metformin and Thiazolidinediones on Bone Metabolism: A Systematic Review and Meta-Analysis. Medicina, 59, Article 904.
https://doi.org/10.3390/medicina59050904
[10]  Rajpathak, S.N., Fu, C., Brodovicz, K.G., Engel, S.S. and Lapane, K. (2015) Sulfonylurea Use and Risk of Hip Fractures among Elderly Men and Women with Type 2 Diabetes. Drugs & Aging, 32, 321-327.
https://doi.org/10.1007/s40266-015-0254-0
[11]  Cortizo, A.M., Sedlinsky, C., McCarthy, A.D., Blanco, A. and Schurman, L. (2006) Osteogenic Actions of the Anti-Diabetic Drug Metformin on Osteoblasts in Culture. European Journal of Pharmacology, 536, 38-46.
https://doi.org/10.1016/j.ejphar.2006.02.030
[12]  Steppe, L., Megafu, M., Tschaffon-Müller, M.E.A., Ignatius, A. and Haffner-Luntzer, M. (2023) Fracture Healing Research: Recent Insights. Bone Reports, 19, Article 101686.
https://doi.org/10.1016/j.bonr.2023.101686
[13]  Chen, Y., Zhou, Y., Lin, J. and Zhang, S. (2022) Challenges to Improve Bone Healing under Diabetic Conditions. Frontiers in Endocrinology, 13, Article 861878.
https://doi.org/10.3389/fendo.2022.861878
[14]  Dhaliwal, R., Ewing, S.K., Vashishth, D., Semba, R.D. and Schwartz, A.V. (2020) Greater Carboxy-Methyl-Lysine Is Associated with Increased Fracture Risk in Type 2 Diabetes. Journal of Bone and Mineral Research, 37, 265-272.
https://doi.org/10.1002/jbmr.4466
[15]  Khosla, S., Samakkarnthai, P., Monroe, D.G. and Farr, J.N. (2021) Update on the Pathogenesis and Treatment of Skeletal Fragility in Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 17, 685-697.
https://doi.org/10.1038/s41574-021-00555-5
[16]  Segura-Egea, J.J., Cabanillas-Balsera, D., Martín-González, J. and Cintra, L.T.A. (2022) Impact of Systemic Health on Treatment Outcomes in Endodontics. International Endodontic Journal, 56, 219-235.
https://doi.org/10.1111/iej.13789
[17]  Zhang, E., Miramini, S., Patel, M., Richardson, M., Ebeling, P. and Zhang, L. (2022) Role of TNF-α in Early-Stage Fracture Healing under Normal and Diabetic Conditions. Computer Methods and Programs in Biomedicine, 213, Article 106536.
https://doi.org/10.1016/j.cmpb.2021.106536
[18]  Jeyabalan, J., Viollet, B., Smitham, P., Ellis, S.A., Zaman, G., Bardin, C., et al. (2013) The Anti-Diabetic Drug Metformin Does Not Affect Bone Mass in Vivo or Fracture Healing. Osteoporosis International, 24, 2659-2670.
https://doi.org/10.1007/s00198-013-2371-0
[19]  Mu, W., Wang, Z., Ma, C., Jiang, Y., Zhang, N., Hu, K., et al. (2018) Metformin Promotes the Proliferation and Differentiation of Murine Preosteoblast by Regulating the Expression of Sirt6 and Oct4. Pharmacological Research, 129, 462-474.
https://doi.org/10.1016/j.phrs.2017.11.020
[20]  Ruan, Z., Yin, H., Wan, T., Lin, Z., Zhao, S., Long, H., et al. (2023) Metformin Accelerates Bone Fracture Healing by Promoting Type H Vessel Formation through Inhibition of YAP1/TAZ Expression. Bone Research, 11, Article No. 45.
https://doi.org/10.1038/s41413-023-00279-4
[21]  Guo, Y., Wei, J., Liu, C., Li, X. and Yan, W. (2023) Metformin Regulates Bone Marrow Stromal Cells to Accelerate Bone Healing in Diabetic Mice. eLife, 12, e88310.
https://doi.org/10.7554/elife.88310
[22]  Grewe, J.M., Knapstein, P., Donat, A., Jiang, S., Smit, D.J., Xie, W., et al. (2022) The Role of Sphingosine-1-Phosphate in Bone Remodeling and Osteoporosis. Bone Research, 10, Article No. 34.
https://doi.org/10.1038/s41413-022-00205-0
[23]  Chen, X., Li, X., Yang, M., Song, Y. and Zhang, Y. (2018) Osteoprotective Effects of Salidroside in Ovariectomized Mice and Diabetic Mice. European Journal of Pharmacology, 819, 281-288.
https://doi.org/10.1016/j.ejphar.2017.12.025
[24]  Bhatti, J.S., Sehrawat, A., Mishra, J., Sidhu, I.S., Navik, U., Khullar, N., et al. (2022) Oxidative Stress in the Pathophysiology of Type 2 Diabetes and Related Complications: Current Therapeutics Strategies and Future Perspectives. Free Radical Biology and Medicine, 184, 114-134.
https://doi.org/10.1016/j.freeradbiomed.2022.03.019
[25]  Black, H.S. (2022) A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus. Antioxidants, 11, Article 2003.
https://doi.org/10.3390/antiox11102003
[26]  Chen, B., He, Q., Yang, J., Pan, Z., Xiao, J., Chen, W., et al. (2023) Metformin Suppresses Oxidative Stress Induced by High Glucose via Activation of the Nrf2/HO-1 Signaling Pathway in Type 2 Diabetic Osteoporosis. Life Sciences, 312, Article 121092.
https://doi.org/10.1016/j.lfs.2022.121092
[27]  Lee, Y., Lee, N., Bhattarai, G., Oh, Y., Yu, M., Yoo, I., et al. (2010) Enhancement of Osteoblast Biocompatibility on Titanium Surface with Terrein Treatment. Cell Biochemistry and Function, 28, 678-685.
https://doi.org/10.1002/cbf.1708
[28]  Zhang, B., Yang, Y., Yi, J., Zhao, Z. and Ye, R. (2021) Hyperglycemia Modulates M1/M2 Macrophage Polarization via Reactive Oxygen Species Overproduction in Ligature-Induced Periodontitis. Journal of Periodontal Research, 56, 991-1005.
https://doi.org/10.1111/jre.12912
[29]  Barbagallo, I., Vanella, A., Peterson, S.J., Kim, D.H., Tibullo, D., Giallongo, C., et al. (2009) Overexpression of Heme Oxygenase-1 Increases Human Osteoblast Stem Cell Differentiation. Journal of Bone and Mineral Metabolism, 28, 276-288.
https://doi.org/10.1007/s00774-009-0134-y
[30]  Domazetovic, V., Marcucci, G., Falsetti, I., Bilia, A.R., Vincenzini, M.T., Brandi, M.L., et al. (2020) Blueberry Juice Antioxidants Protect Osteogenic Activity against Oxidative Stress and Improve Long-Term Activation of the Mineralization Process in Human Osteoblast-Like Saos-2 Cells: Involvement of Sirt1. Antioxidants, 9, Article 125.
https://doi.org/10.3390/antiox9020125
[31]  Cao, X., Luo, D., Li, T., Huang, Z., Zou, W., Wang, L., et al. (2019) MnTBAP Inhibits Bone Loss in Ovariectomized Rats by Reducing Mitochondrial Oxidative Stress in Osteoblasts. Journal of Bone and Mineral Metabolism, 38, 27-37.
https://doi.org/10.1007/s00774-019-01038-4
[32]  Domazetovic, V., Marcucci, G., Pierucci, F., Bruno, G., Di Cesare Mannelli, L., Ghelardini, C., et al. (2019) Blueberry Juice Protects Osteocytes and Bone Precursor Cells against Oxidative Stress Partly through Sirt1. FEBS Open Bio, 9, 1082-1096.
https://doi.org/10.1002/2211-5463.12634
[33]  Mohamad, N., Ima-Nirwana, S. and Chin, K. (2020) Are Oxidative Stress and Inflammation Mediators of Bone Loss Due to Estrogen Deficiency? A Review of Current Evidence. Endocrine, Metabolic & Immune Disorders-Drug Targets, 20, 1478-1487.
https://doi.org/10.2174/1871530320666200604160614
[34]  Ru, J. and Wang, Y. (2020) Osteocyte Apoptosis: The Roles and Key Molecular Mechanisms in Resorption-Related Bone Diseases. Cell Death & Disease, 11, Article No. 846.
https://doi.org/10.1038/s41419-020-03059-8
[35]  Barrett-Connor, E. and Kritz-Silverstein, D. (1996) Does Hyperinsulinemia Preserve Bone? Diabetes Care, 19, 1388-1392.
https://doi.org/10.2337/diacare.19.12.1388
[36]  Verhaeghe, J., Herck, E.V., Visser, W.J., Suiker, A.M.H., Thomasset, M., Einhorn, T.A., et al. (1990) Bone and Mineral Metabolism in BB Rats with Long-Term Diabetes: Decreased Bone Turnover and Osteoporosis. Diabetes, 39, 477-482.
https://doi.org/10.2337/diab.39.4.477
[37]  袁志发, 张通, 蔡金池, 等. 肠道菌群、IGF-1与骨代谢联系机制的研究进展[J]. 中国骨质疏松杂志, 2021, 27(4): 599-604.
[38]  Hou, J.C., Zernicke, R.F. and Barnard, R.J. (1993) Effects of Severe Diabetes and Insulin on the Femoral Neck of the Immature Rat. Journal of Orthopaedic Research, 11, 263-271.
https://doi.org/10.1002/jor.1100110214
[39]  Strotmeyer, E.S., Cauley, J.A., Schwartz, A.V., Nevitt, M.C., Resnick, H.E., Bauer, D.C., et al. (2005) Nontraumatic Fracture Risk with Diabetes Mellitus and Impaired Fasting Glucose in Older White and Black Adults. Archives of Internal Medicine, 165, Article 1612-1617.
https://doi.org/10.1001/archinte.165.14.1612
[40]  Lawlor, D.A., Sattar, N., Sayers, A. and Tobias, J.H. (2012) The Association of Fasting Insulin, Glucose, and Lipids with Bone Mass in Adolescents: Findings from a Cross-Sectional Study. The Journal of Clinical Endocrinology & Metabolism, 97, 2068-2076.
https://doi.org/10.1210/jc.2011-2721
[41]  Yang, J., Hong, N., Shim, J., Rhee, Y. and Kim, H.C. (2018) Association of Insulin Resistance with Lower Bone Volume and Strength Index of the Proximal Femur in Nondiabetic Postmenopausal Women. Journal of Bone Metabolism, 25, 123-132.
https://doi.org/10.11005/jbm.2018.25.2.123
[42]  Isfort, M., Stevens, S.C.W., Schaffer, S., Jong, C.J. and Wold, L.E. (2013) Metabolic Dysfunction in Diabetic Cardiomyopathy. Heart Failure Reviews, 19, 35-48.
https://doi.org/10.1007/s10741-013-9377-8
[43]  Singh, H.J. and Garland, H.O. (1989) A Comparison of the Effects of Oral and Intravenous Glucose Administration on Renal Calcium Excretion in the Rat. Quarterly Journal of Experimental Physiology, 74, 531-540.
https://doi.org/10.1113/expphysiol.1989.sp003300
[44]  Verhaeghe, J., Bouillon, R., Nyomba, B.L., Lissens, W. and Assche, F.A.V. (1986) Vitamin D and Bone Mineral Homeostasis during Pregnancy in the Diabetic BB Rat. Endocrinology, 118, 1019-1025.
https://doi.org/10.1210/endo-118-3-1019
[45]  Elafros, M.A., Andersen, H., Bennett, D.L., Savelieff, M.G., Viswanathan, V., Callaghan, B.C., et al. (2022) Towards Prevention of Diabetic Peripheral Neuropathy: Clinical Presentation, Pathogenesis, and New Treatments. The Lancet Neurology, 21, 922-936.
https://doi.org/10.1016/s1474-4422(22)00188-0
[46]  Henning, R.J. (2018) Type-2 Diabetes Mellitus and Cardiovascular Disease. Future Cardiology, 14, 491-509.
https://doi.org/10.2217/fca-2018-0045
[47]  Cai, K., Liu, Y. and Wang, D. (2022) Prevalence of Diabetic Retinopathy in Patients with Newly Diagnosed Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes/Metabolism Research and Reviews, 39, e3586.
https://doi.org/10.1002/dmrr.3586
[48]  Ramirez-Perdomo, C., Perdomo-Romero, A. and Rodríguez-Vélez, M. (2019) Conhecimentos e práticas para a prevenção do pé diabético. Revista Gaúcha de Enfermagem, 40, e20180161.
https://doi.org/10.1590/1983-1447.2019.20180161

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133