全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

OCTA在近视眼底血流量化的应用
The Application of OCTA in Quantifying Fundus Blood Flow in Myopia

DOI: 10.12677/acm.2025.1561912, PP. 1768-1774

Keywords: 近视,高度近视,光学相干断层扫描血管成像(OCTA),血流密度,脉络膜厚度
Myopia
, High Myopia, Optical Coherence Tomography Angiography (OCTA), Blood Flow Density, Choroidal Thickness

Full-Text   Cite this paper   Add to My Lib

Abstract:

近视的发展趋势逐年上升,成为全球的第二大致盲疾病。OCTA是近15年来新兴的技术,具有无创的特点,可以量化血流参数,使视网膜、脉络膜变得可视化,通过具体的数值方式来表现近视病人脉络膜血流和厚度的变化。本文综述了近年来OCTA在近视、高度近视眼后段成像及量化的研究进展,并讨论了这些发现的临床意义,为近视防控效果的评估提供了新的参考指标。
The prevalence of myopia has been increasing annually, making it the second leading cause of blindness worldwide. Optical Coherence Tomography Angiography (OCTA) is a relatively new technology that has emerged over the past 15 years. It is non-invasive and capable of quantifying blood flow parameters, making the retina and choroid visible. This allows for the representation of changes in choroidal blood flow in myopic patients through specific numerical methods. This article reviews recent advancements in OCTA imaging and quantification of the posterior segment in myopia and high myopia, discusses the clinical significance of these findings, and provides new reference indicators for evaluating the effectiveness of myopia prevention and control.

References

[1]  Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042.
https://doi.org/10.1016/j.ophtha.2016.01.006

[2]  Rudnicka, A.R., Kapetanakis, V.V., Wathern, A.K., Logan, N.S., Gilmartin, B., Whincup, P.H., et al. (2016) Global Variations and Time Trends in the Prevalence of Childhood Myopia, a Systematic Review and Quantitative Meta-Analysis: Implications for Aetiology and Early Prevention. British Journal of Ophthalmology, 100, 882-890.
https://doi.org/10.1136/bjophthalmol-2015-307724

[3]  Wong, Y. and Saw, S. (2016) Epidemiology of Pathologic Myopia in Asia and Worldwide. Asia-Pacific Journal of Ophthalmology, 5, 394-402.
https://doi.org/10.1097/apo.0000000000000234

[4]  中华预防医学会公共卫生眼科分会. 儿童青少年近视防控公共卫生策略分期专家共识(2022) [J]. 中华预防医学杂志, 2023, 57(6): 806-814.
[5]  Novotny, H.R. and Alvis, D.L. (1961) A Method of Photographing Fluorescence in Circulating Blood in the Human Retina. Circulation, 24, 82-86.
https://doi.org/10.1161/01.cir.24.1.82

[6]  Flower, R.W. and Hochheimer, B.F. (1973) A Clinical Technique and Apparatus for Simultaneous Angiography of the Separate Retinal and Choroidal Circulations. Investigative Ophthalmology & Visual Science, 12, 248-261.
[7]  Speich, R., Saesseli, B., Hoffmann, U., Neftel, K.A. and Reichen, J. (1988) Adverse Reactions to Indocyanine Green: A Case Report and a Review of the Literature. Journal of Internal Medicine, 244, 123-128.
[8]  Bille, J.F. (2019) High Resolution Imaging in Microscopy and Ophthalmology. Spinger.
[9]  Gao, S.S., Jia, Y., Zhang, M., Su, J.P., Liu, G., Hwang, T.S., et al. (2016) Optical Coherence Tomography Angiography. Investigative Opthalmology & Visual Science, 57, OCT27.
https://doi.org/10.1167/iovs.15-19043

[10]  Kashani, A.H., Chen, C., Gahm, J.K., Zheng, F., Richter, G.M., Rosenfeld, P.J., et al. (2017) Optical Coherence Tomography Angiography: A Comprehensive Review of Current Methods and Clinical Applications. Progress in Retinal and Eye Research, 60, 66-100.
https://doi.org/10.1016/j.preteyeres.2017.07.002

[11]  Wylęgała, A. (2018) Principles of OCTA and Applications in Clinical Neurology. Current Neurology and Neuroscience Reports, 18, Article No. 96.
https://doi.org/10.1007/s11910-018-0911-x

[12]  Liu, M. and Drexler, W. (2019) Optical Coherence Tomography Angiography and Photoacoustic Imaging in Dermatology. Photochemical & Photobiological Sciences, 18, 945-962.
https://doi.org/10.1039/c8pp00471d

[13]  Le, N., Lu, J., Tang, P., Chung, K., Subhash, H., Kilpatrick-Liverman, L., et al. (2022) Intraoral Optical Coherence Tomography and Angiography Combined with Autofluorescence for Dental Assessment. Biomedical Optics Express, 13, Article No. 3629.
https://doi.org/10.1364/boe.460575

[14]  de Carlo, T.E., Romano, A., Waheed, N.K. and Duker, J.S. (2015) A Review of Optical Coherence Tomography Angiography (OCTA). International Journal of Retina and Vitreous, 1, Article No. 5.
https://doi.org/10.1186/s40942-015-0005-8

[15]  Yang, V.X.D., et al. (2023) High Speed, Wide Velocity Dynamic Range Doppler Optical Coherence Tomography (Part III) in Vivo Endoscopic Imaging of Blood Flow in the Rat and Human Gastrointestinal Tracts. Optics Express, 11, 2416-2424.
[16]  Yang, V.X.D., et al. (2023) High Speed, Wide Velocity Dynamic Range Doppler Optical Coherence Tomography (Part II) Imaging in Vivo Cardiac Dynamics of Xenopus laevis. Optics Express, 11, 1650-1658.
[17]  Makita, S., Hong, Y., Yamanari, M., Yatagai, T. and Yasuno, Y. (2006) Optical Coherence Angiography. Optics Express, 14, Article No. 7821.
https://doi.org/10.1364/oe.14.007821

[18]  Huber, R., Wojtkowski, M., Taira, K., Fujimoto, J.G. and Hsu, K. (2005) Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles. Optics Express, 13, 3513-3528.
https://doi.org/10.1364/opex.13.003513

[19]  Choi, W., Moult, E.M., Waheed, N.K., Adhi, M., Lee, B., Lu, C.D., et al. (2015) Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology, 122, 2532-2544.
https://doi.org/10.1016/j.ophtha.2015.08.029

[20]  Ting, D.S., Cheung, G.C., Lim, L.S. and Yeo, I.Y. (2015) Comparison of Swept Source Optical Coherence Tomography and Spectral Domain Optical Coherence Tomography in Polypoidal Choroidal Vasculopathy. Clinical & Experimental Ophthalmology, 43, 815-819.
https://doi.org/10.1111/ceo.12580

[21]  Grossniklaus, H.E. and Green, W.R. (1992) Pathologic Findings in Pathologic Myopia. Retina, 12, 127-133.
https://doi.org/10.1097/00006982-199212020-00009

[22]  Kaneko, Y., Moriyama, M., Hirahara, S., Ogura, Y. and Ohno-Matsui, K. (2014) Areas of Nonperfusion in Peripheral Retina of Eyes with Pathologic Myopia Detected by Ultra-Widefield Fluorescein Angiography. Investigative Opthalmology & Visual Science, 55, Article No. 1432.
https://doi.org/10.1167/iovs.13-13706

[23]  Živković, M.L.J., Lazić, L., Zlatanovic, M., Zlatanović, N., Brzaković, M., Jovanović, M., et al. (2023) The Influence of Myopia on the Foveal Avascular Zone and Density of Blood Vessels of the Macula—An OCTA Study. Medicina, 59, Article No. 452.
https://doi.org/10.3390/medicina59030452

[24]  Liu, M., Wang, P., Hu, X., Zhu, C., Yuan, Y. and Ke, B. (2020) Myopia-Related Stepwise and Quadrant Retinal Microvascular Alteration and Its Correlation with Axial Length. Eye, 35, 2196-2205.
https://doi.org/10.1038/s41433-020-01225-y

[25]  何洁琼, 王艳华. 青少年近视对外层视网膜厚度和脉络膜厚度影响及相关性研究[J]. 临床眼科杂志, 2023, 31(2): 105-111.
[26]  Vali, M., Nazari, B., Sadri, S., Pour, E., Riazi-Esfahani, H., Faghihi, H., et al. (2023) CNV-Net: Segmentation, Classification and Activity Score Measurement of Choroidal Neovascularization (CNV) Using Optical Coherence Tomography Angiography (OCTA). Diagnostics, 13, Article No. 1309.
https://doi.org/10.3390/diagnostics13071309

[27]  Shi, X., Cai, Y., Luo, X., Liang, S., Rosenfeld, P.J. and Li, X. (2020) Presence or Absence of Choroidal Hyper-Transmission by SD-OCT Imaging Distinguishes Inflammatory from Neovascular Lesions in Myopic Eyes. Graefes Archive for Clinical and Experimental Ophthalmology, 258, 751-758.
https://doi.org/10.1007/s00417-019-04571-0

[28]  Chhablani, J., Deepa, M.J., Tyagi, M., Narayanan, R. and Kozak, I. (2015) Fluorescein Angiography and Optical Coherence Tomography in Myopic Choroidal Neovascularization. Eye, 29, 519-524.
https://doi.org/10.1038/eye.2014.345

[29]  Chhablani, J. and Barteselli, G. (2015) Clinical Applications of Choroidal Imaging Technologies. Indian Journal of Ophthalmology, 63, Article No. 384.
https://doi.org/10.4103/0301-4738.159861

[30]  Ferrara, D., Waheed, N.K. and Duker, J.S. (2016) Investigating the Choriocapillaris and Choroidal Vasculature with New Optical Coherence Tomography Technologies. Progress in Retinal and Eye Research, 52, 130-155.
https://doi.org/10.1016/j.preteyeres.2015.10.002

[31]  Zhou, X., Zhang, S., Yang, F., Yang, Y., Huang, Q., Huang, C., et al. (2021) Decreased Choroidal Blood Perfusion Induces Myopia in Guinea Pigs. Investigative Opthalmology & Visual Science, 62, Article No. 30.
https://doi.org/10.1167/iovs.62.15.30

[32]  李疏凤, 李雪, 黄莹莹, 等. 儿童近视进展与眼底血流及脉络膜厚度的关系[J]. 中华眼视光学与视觉科学杂志, 2021, 23(10): 759-765.
[33]  Wu, H., Zhang, G., Shen, M., Xu, R., Wang, P., Guan, Z., et al. (2021) Assessment of Choroidal Vascularity and Choriocapillaris Blood Perfusion in Anisomyopic Adults by SS-OCT/OCTA. Investigative Opthalmology & Visual Science, 62, Article No. 8.
https://doi.org/10.1167/iovs.62.1.8

[34]  Yang, Y., Chen, M., Yao, X., Wang, J., Shi, J., Wang, Y., et al. (2023) Choroidal Blood Perfusion Could Predict the Sensitivity of Myopia Formation in Guinea Pigs. Experimental Eye Research, 232, Article ID: 109509.
https://doi.org/10.1016/j.exer.2023.109509

[35]  Gao, J., Rao, C., Li, F., Liu, L. and Liu, K. (2022) Ultra-Widefield Swept-Source Optical Coherence Tomography Angiography in the Assessment of Choroidal Changes in Young Adults with Myopia. Translational Vision Science & Technology, 11, Article No. 14.
https://doi.org/10.1167/tvst.11.12.14

[36]  Liu, L., Zhu, C., Yuan, Y., Hu, X., Chen, C., Zhu, H., et al. (2022) Three-Dimensional Choroidal Vascularity Index in High Myopia Using Swept-Source Optical Coherence Tomography. Current Eye Research, 47, 484-492.
https://doi.org/10.1080/02713683.2021.2006236

[37]  Xuan, M., Wang, D., Xiao, O., Guo, X., Zhang, J., Yin, Q., et al. (2024) Choroidal Vascularity and Axial Length Elongation in Highly Myopic Children: A 2-Year Longitudinal Investigation. Investigative Ophthalmology & Visual Science, 65, Article No. 7.
https://doi.org/10.1167/iovs.65.10.7

[38]  Wang, Y.X., Panda-Jonas, S. and Jonas, J.B. (2021) Optic Nerve Head Anatomy in Myopia and Glaucoma, Including Parapapillary Zones Alpha, Beta, Gamma and Delta: Histology and Clinical Features. Progress in Retinal and Eye Research, 83, Article ID: 100933.
https://doi.org/10.1016/j.preteyeres.2020.100933

[39]  Spaide, R.F., Klancnik, J.M. and Cooney, M.J. (2015) Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography. JAMA Ophthalmology, 133, Article No. 45.
https://doi.org/10.1001/jamaophthalmol.2014.3616

[40]  Sung, M.S., Heo, H. and Park, S.W. (2018) Microstructure of Parapapillary Atrophy Is Associated with Parapapillary Microvasculature in Myopic Eyes. American Journal of Ophthalmology, 192, 157-168.
https://doi.org/10.1016/j.ajo.2018.05.022

[41]  Li, Y., Jia, W., Liu, X., Chen, Y., Chen, H., Ren, G., et al. (2024) Measurement of the Tilt Angle of the Optic Disc Using Spectral-Domain Optical Coherence Tomography and Related Factors in Myopia. Translational Vision Science & Technology, 13, Article No. 24.
https://doi.org/10.1167/tvst.13.9.24

[42]  Sung, M.S., Kang, Y.S., Heo, H. and Park, S.W. (2016) Characteristics of Optic Disc Rotation in Myopic Eyes. Ophthalmology, 123, 400-407.
https://doi.org/10.1016/j.ophtha.2015.10.018

[43]  Sung, M.S., Heo, M.Y., Heo, H. and Park, S.W. (2019) Bruch’s Membrane Opening Enlargement and Its Implication on the Myopic Optic Nerve Head. Scientific Reports, 9, Article ID: 19564.
https://doi.org/10.1038/s41598-019-55926-w

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133