全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

免疫细胞在骨折愈合的研究进展及其发展前景
Research Progress and Future Prospects of Immune Cells in Fracture Healing

DOI: 10.12677/acm.2025.1561910, PP. 1743-1754

Keywords: 免疫细胞,骨折愈合,适应性免疫,巨噬细胞,细胞疗法,组织学工程,骨免疫学
Immune Cells
, Fracture Healing, Adaptive Immunity, Macrophages, Cell Therapy, Tissue Engineering, Osteoimmunology

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨折损伤发生后,最初的炎症反应可能对骨折修复具有促进的作用。然而,过度炎症对这一过程可能具有延缓作用,迄今为止,很少有研究能够明确阐明某些免疫细胞在骨折愈合中的作用,鉴于骨折愈合并发症的高度临床相关性,这种知识的缺乏尤其引人注目。本文就免疫细胞在骨愈合的研究进展及其发展前景作一综述,拟为揭示免疫细胞在骨组织损伤修复中的调控作用。
Following a fracture, the initial inflammatory response may promote the healing process. However, excessive inflammation can delay this process. To date, few studies have clearly elucidated the roles of specific immune cells in fracture healing. Given the high clinical relevance of fracture healing complications, this knowledge gap is particularly noteworthy. This review provides a comprehensive overview of the research progress on immune cells in bone healing and discusses future prospects, aiming to shed light on the regulatory roles of immune cells in bone tissue repair.

References

[1]  GBD 2019 Mental Disorders Collaborators (2021) Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990-2019: A Systematic Analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity, 2, e580-e592.
https://doi.org/10.1016/S2215-0366(21)00395-3
[2]  Walter, N., Hierl, K., Brochhausen, C., Alt, V. and Rupp, M. (2022) The Epidemiology and Direct Healthcare Costs of Aseptic Nonunions in Germany—A Descriptive Report. Bone & Joint Research, 11, 541-547.
https://doi.org/10.1302/2046-3758.118.bjr-2021-0238.r3
[3]  SK, S. (2019) Fracture Non-Union: A Review of Clinical Challenges and Future Research Needs. Malaysian Orthopaedic Journal, 13, 1-10.
https://doi.org/10.5704/moj.1907.001
[4]  Wildemann, B., Ignatius, A., Leung, F., Taitsman, L.A., Smith, R.M., Pesántez, R., et al. (2021) Non-Union Bone Fractures. Nature Reviews Disease Primers, 7, Article No. 57.
https://doi.org/10.1038/s41572-021-00289-8
[5]  Loeffler, J., Duda, G.N., Sass, F.A. and Dienelt, A. (2018) The Metabolic Microenvironment Steers Bone Tissue Regeneration. Trends in Endocrinology & Metabolism, 29, 99-110.
https://doi.org/10.1016/j.tem.2017.11.008
[6]  Schmidt-Bleek, K., Petersen, A., Dienelt, A., Schwarz, C. and Duda, G.N. (2014) Initiation and Early Control of Tissue Regeneration—Bone Healing as a Model System for Tissue Regeneration. Expert Opinion on Biological Therapy, 14, 247-259.
https://doi.org/10.1517/14712598.2014.857653
[7]  Baht, G.S., Vi, L. and Alman, B.A. (2018) The Role of the Immune Cells in Fracture Healing. Current Osteoporosis Reports, 16, 138-145.
https://doi.org/10.1007/s11914-018-0423-2
[8]  El-Jawhari, J.J., Jones, E. and Giannoudis, P.V. (2016) The Roles of Immune Cells in Bone Healing; What We Know, Do Not Know and Future Perspectives. Injury, 47, 2399-2406.
https://doi.org/10.1016/j.injury.2016.10.008
[9]  Könnecke, I., Serra, A., El Khassawna, T., Schlundt, C., Schell, H., Hauser, A., et al. (2014) T and B Cells Participate in Bone Repair by Infiltrating the Fracture Callus in a Two-Wave Fashion. Bone, 64, 155-165.
https://doi.org/10.1016/j.bone.2014.03.052
[10]  Schlundt, C., El Khassawna, T., Serra, A., Dienelt, A., Wendler, S., Schell, H., et al. (2018) Macrophages in Bone Fracture Healing: Their Essential Role in Endochondral Ossification. Bone, 106, 78-89.
https://doi.org/10.1016/j.bone.2015.10.019
[11]  Toben, D., Schroeder, I., El Khassawna, T., Mehta, M., Hoffmann, J., Frisch, J., et al. (2010) Fracture Healing Is Accelerated in the Absence of the Adaptive Immune System. Journal of Bone and Mineral Research, 26, 113-124.
https://doi.org/10.1002/jbmr.185
[12]  Xiao, W., Hu, Z., Li, T. and Li, J. (2017) Bone Fracture Healing Is Delayed in Splenectomic Rats. Life Sciences, 173, 55-61.
https://doi.org/10.1016/j.lfs.2016.12.005
[13]  Richardson, J., Hill, A.M., Johnston, C.J.C., McGregor, A., Norrish, A.R., Eastwood, D., et al. (2008) Fracture Healing in HIV-Positive Populations. The Journal of Bone and Joint Surgery. British Volume, 90, 988-994.
https://doi.org/10.1302/0301-620x.90b8.20861
[14]  Dimitriou, R., Tsiridis, E., Carr, I., Simpson, H. and Giannoudis, P.V. (2006) The Role of Inhibitory Molecules in Fracture Healing. Injury, 37, S20-S29.
https://doi.org/10.1016/j.injury.2006.02.039
[15]  Opal, S.M. (2000) Phylogenetic and Functional Relationships between Coagulation and the Innate Immune Response. Critical Care Medicine, 28, S77-S80.
https://doi.org/10.1097/00003246-200009001-00017
[16]  Okamoto, K. and Takayanagi, H. (2018) Osteoimmunology. Cold Spring Harbor Perspectives in Medicine, 9, a031245.
https://doi.org/10.1101/cshperspect.a031245
[17]  El Khassawna, T., Serra, A., Bucher, C.H., Petersen, A., Schlundt, C., Könnecke, I., et al. (2017) T Lymphocytes Influence the Mineralization Process of Bone. Frontiers in Immunology, 8, Article 562.
https://doi.org/10.3389/fimmu.2017.00562
[18]  Avin, K.G., Dominguez, J.M., Chen, N.X., Hato, T., Myslinski, J.J., Gao, H., et al. (2022) Single‐Cell Rnaseq Provides Insight into Altered Immune Cell Populations in Human Fracture Nonunions. Journal of Orthopaedic Research, 41, 1060-1069.
https://doi.org/10.1002/jor.25452
[19]  Reinke, S., Geissler, S., Taylor, W.R., Schmidt-Bleek, K., Juelke, K., Schwachmeyer, V., et al. (2013) Terminally Differentiated CD8+ T Cells Negatively Affect Bone Regeneration in Humans. Science Translational Medicine, 5, 177ra36.
https://doi.org/10.1126/scitranslmed.3004754
[20]  Jiang, H., Ti, Y., Wang, Y., Wang, J., Chang, M., Zhao, J., et al. (2017) Downregulation of Regulatory T Cell Function in Patients with Delayed Fracture Healing. Clinical and Experimental Pharmacology and Physiology, 45, 430-436.
https://doi.org/10.1111/1440-1681.12902
[21]  Schlundt, C., Reinke, S., Geissler, S., Bucher, C.H., Giannini, C., Märdian, S., et al. (2019) Individual Effector/Regulator T Cell Ratios Impact Bone Regeneration. Frontiers in Immunology, 10, Article 1954.
https://doi.org/10.3389/fimmu.2019.01954
[22]  Sun, G., Wang, Z., Ti, Y., Wang, Y., Wang, J., Zhao, J., et al. (2017) STAT3 Promotes Bone Fracture Healing by Enhancing the FOXP3 Expression and the Suppressive Function of Regulatory T Cells. APMIS, 125, 752-760.
https://doi.org/10.1111/apm.12706
[23]  Wang, J., Ti, Y., Wang, Y., Guo, G., Jiang, H., Chang, M., Qian, H., Zhao, J. and Sun, G. (2018) LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture. Immunological Investigations, 47, 492-503.
[24]  Wang, J., Jiang, H., Qiu, Y., Wang, Y., Sun, G. and Zhao, J. (2019) Effector Memory Regulatory T Cells Were Most Effective at Suppressing RANKL but Their Frequency Was Downregulated in Tibial Fracture Patients with Delayed Union. Immunology Letters, 209, 21-27.
https://doi.org/10.1016/j.imlet.2019.03.018
[25]  Wu, T., Wang, L., Jian, C., Zhang, Z., Zeng, R., Mi, B., et al. (2024) A Distinct “Repair” Role of Regulatory T Cells in Fracture Healing. Frontiers of Medicine, 18, 516-537.
https://doi.org/10.1007/s11684-023-1024-8
[26]  Chen, R., Zhang, X., Li, B., Tonetti, M.S., Yang, Y., Li, Y., et al. (2024) Progranulin-Dependent Repair Function of Regulatory T Cells Drives Bone-Fracture Healing. Journal of Clinical Investigation, 135, e180679.
https://doi.org/10.1172/jci180679
[27]  Kalyan, S. (2016) It May Seem Inflammatory, but Some T Cells Are Innately Healing to the Bone. Journal of Bone and Mineral Research, 31, 1997-2000.
https://doi.org/10.1002/jbmr.2875
[28]  Dar, H.Y., Perrien, D.S., Pal, S., Stoica, A., Uppuganti, S., Nyman, J.S., et al. (2023) Callus γδ T Cells and Microbe-Induced Intestinal Th17 Cells Improve Fracture Healing in Mice. Journal of Clinical Investigation, 133, e166577.
https://doi.org/10.1172/jci166577
[29]  Mauri, C. and Bosma, A. (2012) Immune Regulatory Function of B Cells. Annual Review of Immunology, 30, 221-241.
https://doi.org/10.1146/annurev-immunol-020711-074934
[30]  Yoshizaki, A., Miyagaki, T., DiLillo, D.J., Matsushita, T., Horikawa, M., Kountikov, E.I., et al. (2012) Regulatory B Cells Control T-Cell Autoimmunity through IL-21-Dependent Cognate Interactions. Nature, 491, 264-268.
https://doi.org/10.1038/nature11501
[31]  Das, A., Ellis, G., Pallant, C., Lopes, A.R., Khanna, P., Peppa, D., et al. (2012) Il-10-Producing Regulatory B Cells in the Pathogenesis of Chronic Hepatitis B Virus Infection. The Journal of Immunology, 189, 3925-3935.
https://doi.org/10.4049/jimmunol.1103139
[32]  Barry, F.P. and Murphy, J.M. (2004) Mesenchymal Stem Cells: Clinical Applications and Biological Characterization. The International Journal of Biochemistry & Cell Biology, 36, 568-584.
https://doi.org/10.1016/j.biocel.2003.11.001
[33]  Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 284, 143-147.
https://doi.org/10.1126/science.284.5411.143
[34]  Demircan, P.C., Sariboyaci, A.E., Unal, Z.S., Gacar, G., Subasi, C. and Karaoz, E. (2011) Immunoregulatory Effects of Human Dental Pulp-Derived Stem Cells on T Cells: Comparison of Trans Well Co-Culture and Mixed Lymphocyte Reaction Systems. Cytotherapy, 13, 1205-1220.
[35]  Klyushnenkova, E., Mosca, J.D., Zernetkina, V., Majumdar, M.K., Beggs, K.J., Simonetti, D.W., et al. (2005) T Cell Responses to Allogeneic Human Mesenchymal Stem Cells: Immunogenicity, Tolerance, and Suppression. Journal of Biomedical Science, 12, 47-57.
https://doi.org/10.1007/s11373-004-8183-7
[36]  Chen, Z., Mao, X., Tan, L., Friis, T., Wu, C., Crawford, R., et al. (2014) Osteoimmunomodulatory Properties of Magnesium Scaffolds Coated with β-Tricalcium Phosphate. Biomaterials, 35, 8553-8565.
https://doi.org/10.1016/j.biomaterials.2014.06.038
[37]  Liu, H., Zhang, J., Liu, C., Hayashi, Y. and Kao, W.W.‐Y. (2012) Bone Marrow Mesenchymal Stem Cells Can Differentiate and Assume Corneal Keratocyte Phenotype. Journal of Cellular and Molecular Medicine, 16, 1114-1124.
https://doi.org/10.1111/j.1582-4934.2011.01418.x
[38]  Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S. and Galipeau, J. (2005) Allogeneic Marrow Stromal Cells Are Immune Rejected by MHC Class I-and Class II-Mismatched Recipient Mice. Blood, 106, 4057-4065.
https://doi.org/10.1182/blood-2005-03-1004
[39]  Arvidson, K., Abdallah, B.M., Applegate, L.A., Baldini, N., Cenni, E., Gomez-Barrena, E., et al. (2011) Bone Regeneration and Stem Cells. Journal of Cellular and Molecular Medicine, 15, 718-746.
https://doi.org/10.1111/j.1582-4934.2010.01224.x
[40]  Street, J., Bao, M., deGuzman, L., Bunting, S., Peale, F.V., Ferrara, N., et al. (2002) Vascular Endothelial Growth Factor Stimulates Bone Repair by Promoting Angiogenesis and Bone Turnover. Proceedings of the National Academy of Sciences, 99, 9656-9661.
https://doi.org/10.1073/pnas.152324099
[41]  Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L., Graves, D.T. and Einhorn, T.A. (2003) Fracture Healing as a Post‐natal Developmental Process: Molecular, Spatial, and Temporal Aspects of Its Regulation. Journal of Cellular Biochemistry, 88, 873-884.
https://doi.org/10.1002/jcb.10435
[42]  Martinez, F.O. and Gordon, S. (2014) The M1 and M2 Paradigm of Macrophage Activation: Time for Reassessment. F1000Prime Reports, 6, Article 13.
https://doi.org/10.12703/p6-13
[43]  Rőszer, T. (2015) Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators of Inflammation, 2015, Article 816460.
https://doi.org/10.1155/2015/816460
[44]  Alnaeeli, M., Park, J., Mahamed, D., Penninger, J.M. And Teng, Y.T. (2007) Dendritic Cells at the Osteo-Immune Interface: Implications for Inflammation-Induced Bone Loss. Journal of Bone and Mineral Research, 22, 775-780.
[45]  Blank, R.D. (2019) Practical Management of Fracture Risk among Peri-and Postmenopausal Women. Fertility and Sterility, 112, 782-790.
https://doi.org/10.1016/j.fertnstert.2019.09.038
[46]  Alexander, K.A., Chang, M.K., Maylin, E.R., Kohler, T., Muller, R., Wu, A.C., Van Rooijen, N., Sweet, M.J., Hume, D.A., Raggatt, L.J., et al. (2011) Osteal Macrophages Promote in Vivo Intramembranous Bone Healing in a Mouse Tibial Injury Model. Journal of Bone and Mineral Research, 26, 1517-1532.
[47]  Pajarinen, J., Lin, T., Gibon, E., Kohno, Y., Maruyama, M., Nathan, K., et al. (2019) Mesenchymal Stem Cell-Macrophage Crosstalk and Bone Healing. Biomaterials, 196, 80-89.
https://doi.org/10.1016/j.biomaterials.2017.12.025
[48]  Shin, R.L., Lee, C., Shen, O.Y., Xu, H. and Lee, O.K. (2021) The Crosstalk between Mesenchymal Stem Cells and Macrophages in Bone Regeneration: A Systematic Review. Stem Cells International, 2021, Article 8835156.
https://doi.org/10.1155/2021/8835156
[49]  Wasnik, S., Rundle, C.H., Baylink, D.J., Yazdi, M.S., Carreon, E.E., Xu, Y., et al. (2018) 1,25-Dihydroxyvitamin D Suppresses M1 Macrophages and Promotes M2 Differentiation at Bone Injury Sites. JCI Insight, 3, e98773.
https://doi.org/10.1172/jci.insight.98773
[50]  McCauley, J., Bitsaktsis, C. and Cottrell, J. (2020) Macrophage Subtype and Cytokine Expression Characterization during the Acute Inflammatory Phase of Mouse Bone Fracture Repair. Journal of Orthopaedic Research, 38, 1693-1702.
https://doi.org/10.1002/jor.24603
[51]  Zhao, S., Kong, F., Jie, J., Li, Q., Liu, H., Xu, A., et al. (2020) Macrophage MSR1 Promotes BMSC Osteogenic Differentiation and M2-Like Polarization by Activating PI3K/AKT/Gsk3β/β-Catenin Pathway. Theranostics, 10, 17-35.
https://doi.org/10.7150/thno.36930
[52]  Hachemi, Y., Perrin, S., Ethel, M., Julien, A., Vettese, J., Geisler, B., et al. (2024) Multimodal Analyses of Immune Cells during Bone Repair Identify Macrophages as a Therapeutic Target in Musculoskeletal Trauma. Bone Research, 12, Article No. 56.
https://doi.org/10.1038/s41413-024-00347-3
[53]  Raggatt, L.J., Wullschleger, M.E., Alexander, K.A., Wu, A.C.K., Millard, S.M., Kaur, S., et al. (2014) Fracture Healing via Periosteal Callus Formation Requires Macrophages for Both Initiation and Progression of Early Endochondral Ossification. The American Journal of Pathology, 184, 3192-3204.
https://doi.org/10.1016/j.ajpath.2014.08.017
[54]  Guihard, P., Boutet, M., Brounais-Le Royer, B., Gamblin, A., Amiaud, J., Renaud, A., et al. (2015) Oncostatin M, an Inflammatory Cytokine Produced by Macrophages, Supports Intramembranous Bone Healing in a Mouse Model of Tibia Injury. The American Journal of Pathology, 185, 765-775.
https://doi.org/10.1016/j.ajpath.2014.11.008
[55]  Gu, Q., Yang, H. and Shi, Q. (2017) Macrophages and Bone Inflammation. Journal of Orthopaedic Translation, 10, 86-93.
https://doi.org/10.1016/j.jot.2017.05.002
[56]  Furze, R.C. and Rankin, S.M. (2008) Neutrophil Mobilization and Clearance in the Bone Marrow. Immunology, 125, 281-288.
https://doi.org/10.1111/j.1365-2567.2008.02950.x
[57]  Quail, D.F., Amulic, B., Aziz, M., Barnes, B.J., Eruslanov, E., Fridlender, Z.G., et al. (2022) Neutrophil Phenotypes and Functions in Cancer: A Consensus Statement. Journal of Experimental Medicine, 219, e20220011.
https://doi.org/10.1084/jem.20220011
[58]  Zhang, X., Baht, G.S., Huang, R., Chen, Y., Molitoris, K.H., Miller, S.E., et al. (2022) Rejuvenation of Neutrophils and Their Extracellular Vesicles Is Associated with Enhanced Aged Fracture Healing. Aging Cell, 21, e13651.
https://doi.org/10.1111/acel.13651
[59]  Cai, B., Lin, D., Li, Y., Wang, L., Xie, J., Dai, T., et al. (2021) N2‐Polarized Neutrophils Guide Bone Mesenchymal Stem Cell Recruitment and Initiate Bone Regeneration: A Missing Piece of the Bone Regeneration Puzzle. Advanced Science, 8, Article 2100584.
https://doi.org/10.1002/advs.202100584
[60]  Wernersson, S. and Pejler, G. (2014) Mast Cell Secretory Granules: Armed for Battle. Nature Reviews Immunology, 14, 478-494.
https://doi.org/10.1038/nri3690
[61]  Seebach, C., Henrich, D., Kähling, C., Wilhelm, K., Tami, A.E., Alini, M., et al. (2010) Endothelial Progenitor Cells and Mesenchymal Stem Cells Seeded Onto β-TCP Granules Enhance Early Vascularization and Bone Healing in a Critical-Sized Bone Defect in Rats. Tissue Engineering Part A, 16, 1961-1970.
https://doi.org/10.1089/ten.tea.2009.0715
[62]  Henrich, D., Seebach, C., Kaehling, C., Scherzed, A., Wilhelm, K., Tewksbury, R., et al. (2009) Simultaneous Cultivation of Human Endothelial-Like Differentiated Precursor Cells and Human Marrow Stromal Cells on β-Tricalcium Phosphate. Tissue Engineering Part C: Methods, 15, 551-560.
https://doi.org/10.1089/ten.tec.2008.0385
[63]  Usami, K., Mizuno, H., Okada, K., Narita, Y., Aoki, M., Kondo, T., et al. (2008) Composite Implantation of Mesenchymal Stem Cells with Endothelial Progenitor Cells Enhances Tissue‐Engineered Bone Formation. Journal of Biomedical Materials Research Part A, 90, 730-741.
https://doi.org/10.1002/jbm.a.32142
[64]  Chen, Z., Wu, C., Gu, W., Klein, T., Crawford, R. and Xiao, Y. (2014) Osteogenic Differentiation of Bone Marrow MSCs by β-Tricalcium Phosphate Stimulating Macrophages via BMP2 Signalling Pathway. Biomaterials, 35, 1507-1518.
https://doi.org/10.1016/j.biomaterials.2013.11.014
[65]  Yin, Y., Li, X., Ma, H., Zhang, J., Yu, D., Zhao, R., et al. (2021) In Situ Transforming RNA Nanovaccines from Polyethylenimine Functionalized Graphene Oxide Hydrogel for Durable Cancer Immunotherapy. Nano Letters, 21, 2224-2231.
https://doi.org/10.1021/acs.nanolett.0c05039
[66]  Newman, H., Shih, Y.V. and Varghese, S. (2021) Resolution of Inflammation in Bone Regeneration: From Understandings to Therapeutic Applications. Biomaterials, 277, Article 121114.
https://doi.org/10.1016/j.biomaterials.2021.121114
[67]  Zhang, J., Shi, H., Zhang, N., Hu, L., Jing, W. and Pan, J. (2020) Interleukin‐4‐Loaded Hydrogel Scaffold Regulates Macrophages Polarization to Promote Bone Mesenchymal Stem Cells Osteogenic Differentiation via TGF‐β1/Smad Pathway for Repair of Bone Defect. Cell Proliferation, 53, e12907.
https://doi.org/10.1111/cpr.12907
[68]  Zou, M., Sun, J. and Xiang, Z. (2021) Induction of M2‐Type Macrophage Differentiation for Bone Defect Repair via an Interpenetration Network Hydrogel with a Go‐Based Controlled Release System. Advanced Healthcare Materials, 10, Article 2001502.
https://doi.org/10.1002/adhm.202001502
[69]  Seebach, C., Henrich, D., Schaible, A., Relja, B., Jugold, M., Bönig, H., et al. (2015) Cell-Based Therapy by Implanted Human Bone Marrow-Derived Mononuclear Cells Improved Bone Healing of Large Bone Defects in Rats. Tissue Engineering Part A, 21, 1565-1578.
https://doi.org/10.1089/ten.tea.2014.0410
[70]  Krieger, J.R., Ogle, M.E., McFaline-Figueroa, J., Segar, C.E., Temenoff, J.S. and Botchwey, E.A. (2016) Spatially Localized Recruitment of Anti-Inflammatory Monocytes by SDF-1α-Releasing Hydrogels Enhances Microvascular Network Remodeling. Biomaterials, 77, 280-290.
https://doi.org/10.1016/j.biomaterials.2015.10.045
[71]  Arron, J.R. and Choi, Y. (2000) Bone versus Immune System. Nature, 408, 535-536.
https://doi.org/10.1038/35046196
[72]  Dimitriou, R., Mataliotakis, G.I., Angoules, A.G., Kanakaris, N.K. and Giannoudis, P.V. (2011) Complications Following Autologous Bone Graft Harvesting from the Iliac Crest and Using the RIA: A Systematic Review. Injury, 42, S3-S15.
https://doi.org/10.1016/j.injury.2011.06.015
[73]  Dill, T., Schächinger, V., Rolf, A., Möllmann, S., Thiele, H., Tillmanns, H., et al. (2009) Intracoronary Administration of Bone Marrow-Derived Progenitor Cells Improves Left Ventricular Function in Patients at Risk for Adverse Remodeling after Acute ST-Segment Elevation Myocardial Infarction: Results of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction Study (REPAIR-AMI) Cardiac Magnetic Resonance Imaging Substudy. American Heart Journal, 157, 541-547.
https://doi.org/10.1016/j.ahj.2008.11.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133