Development of an Algorithm Based on a Mechanism for Managing the Charge and Discharge of Lead Acid Batteries to Optimize the Solar Energy Produced in Burundi
After the era of fossil fuel exploitation, researchers have begun to exploit solar energy, which is stored using rechargeable batteries. In Burundi, lead-acid batteries are often used for storage. During charging and discharging cycles, a certain amount of energy is generated inside the battery, gradually causing it to age. We see a loss of energy when batteries are charged while there is still sunshine when the battery is charged quickly as a result of aging. It is difficult to fill all the batteries when it is raining. This project was carried out to develop an algorithm for managing the charging and discharging of batteries by switching to optimize the solar energy produced. The method consists of designing a program using Arduino IDE software based on the control algorithm developed, with an Arduino UNO microcontroller as the command-and-control element. The algorithm developed includes temperature control using a DHT11 temperature sensor. The control circuit was designed using Proteus software. We have produced a program of algorithms developed using MATLAB 2020a software. The results of the design and simulation with Proteus and MATLAB verified and validated the experimental results on the effectiveness of the energy recovery algorithm developed.
References
[1]
Benhamida, M.T. and Sahraoui, T. (2022) Estimation de l’état de charge d’une batterie Li-Ion utilisé dans un véhicule électrique. Universite kasdi merbah ouargla. https://dspace.univ-ouargla.dz/jspui/handle/123456789/30197
[2]
Singh, P., Vinjamuri, R., Wang, X. and Reisner, D. (2006) Design and Implementation of a Fuzzy Logic-Based State-Of-Charge Meter for Li-Ion Batteries Used in Portable Defibrillators. Journal of Power Sources, 162, 829-836. https://doi.org/10.1016/j.jpowsour.2005.04.039
[3]
Singh, P., Fennie, C. and Reisner, D.E. (1999) Fuzzy Logic Enhanced Electrochemical Impedance Spectroscopy (FLEEIS) to Determine Battery State-of-Charge. Proceedings 15th Annual Battery Conference on Applications and Advances, 1-5 Aug 1999, Vancouver, page.
[4]
Han, W., Wik, T., Kersten, A., Dong, G. and Zou, C. (2023) Reconfiguration Next-Generation Battery Management Systems: Dynamic Reconfiguration. IEEE Industrial Electronics Magazine, 14, 20-31.
[5]
Belazi, N. (2012) Estimation de l’état de charge (SOC) et de l’état de santé (SOH) d’une batterie Lithium-Ion utilisée pour les voitures électriques. Mémoire de maîtrise électronique, Montréal, École de technologie supérieure. https://espace.etsmtl.ca/id/eprint/967
[6]
Qudah, A. and Mokheimer, E.M.A. (2024) Optimizing Photovoltaic and Battery Integration for RO Desalination Using Differential Evolution Algorithm. Energy Proceedings, 43, 1-7.
[7]
Ziat, K., Louahlia, H., Gualous, H. and Schaetzel, P. (2020) Effet du courant de charge et décharge sur l’augmentation de la température d’une batterie [Charge and Discharge Current Effect on Lithium Ion Battery Temperature Elevation]. Energy Storage. 28è conférence Française de thermique, 1-8. https://www.energyproceedings.org/wpcontent/uploads/icae2023/1704027976.pdf
[8]
Balasingam, B., Ahmed, M. and Pattipati, K. (2020) Battery Management Systems—Challenges and Some Solutions. Energies, 13, Article 2825. https://doi.org/10.3390/en13112825
[9]
Dufo-López, R., Cortés-Arcos, T., Artal-Sevil, J.S. and Bernal-Agustín, J.L. (2021) Comparison of Lead-Acid and Li-Ion Batteries Lifetime Prediction Models in Stand-Alone Photovoltaic Systems. Applied Sciences, 11, Article 1099. https://doi.org/10.3390/app11031099
[10]
Imadan, A.I., Semassou, G.C. and Tossa, A.K. (2024) Étude de faisabilité technicoéconomique d’installation d’une filière de régénération de batteries stationnaires solaires au plomb acide au Bénin. Afrique SCIENCE, 24, 122-131. http://www.afriquescience.net
[11]
Abdelhamid, B. (2023) Conception et implémentation d’un système de stockage à base batteries dans une chaîne de conversion photovoltaïque. Université de Ghardaïa, Algérie, 1-101.
[12]
Draia, U.A. (2021) Contribution à la réalisation d’un système de suivi et de gestion des batteries d’accumulateurs.
[13]
Aymen, B.M. and Islam, S. (2023) Étude et Réalisation d’un Chargeur Batterie Ni-MH. Université de Mohamed El-Bachir El-Ibrahimi—Bordj Bou Arreridj.
[14]
Singh, P. and Reisner, D. (2002) Fuzzy Logic-Based State-Of-Health Determination of Lead Acid Batteries. 24th Annual International Telecommunications Energy Conference, Montreal, 29 September-3 October 2002, 583-590 https://doi.org/10.1109/intlec.2002.1048716
[15]
Chang, W. (2013) The State of Charge Estimating Methods for Battery: A Review. ISRN Applied Mathematics, 2013, Article ID: 953792. https://doi.org/10.1155/2013/953792
Singh, P., Damodar, Y.S., Fennie, C. and Reisner, D.E. (2002) Fuzzy Logic-Based Determination of Lead Acid Battery State-of-Charge by Impedance Interrogation Methods. Proceedings. EVS-17, Montreal, 15-18 October 2000, 1-19.
[18]
Saleh, M. (199) Introduction to Matlab for Engineers. Industrial Robot: An International Journal, 25, 1-74. https://doi.org/10.1108/ir.1998.04925dae.002
[19]
Achaibou, N., Haddadi, M. and Malek, A. (2012) Modeling of Lead Acid Batteries in PV Systems. Energy Procedia, 18, 538-544. https://doi.org/10.1016/j.egypro.2012.05.065
[20]
Achaibou, N., Haddadi, M. and Malek, A. (2012) Modeling of Lead Acid Batteries in PV Systems. Energy Procedia, 18, 538-544. https://doi.org/10.1016/j.egypro.2012.05.065
[21]
Chang, W. (2013) The State of Charge Estimating Methods for Battery: A Review. ISRN Applied Mathematics, 2013, Article ID: 953792. https://doi.org/10.1155/2013/953792
[22]
Achaibou, N., Malek, A., Bacha, N., et al. (2015) Modèle de Vieillissement Des Batteries Plomb-Acide Dans Les Systèmes PV. 61-66. https://www.researchgate.net/profile/Nadia-Achaibou/publication/242132515_Modele_de_Vieillissement_des_Batteries_Plomb-Acide_dans_les_Sys-temes_PV/links/55e46c9e08ae2fac4722e0a2/Modele-de-Vieillissement-des-Batteries-Plomb-Acide-dans-les-Systemes-PV.pdf