Rechargeable zinc-air batteries (ZABs) represent a viable energy solution; however, the slow kinetics of the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) severely hinder their commercial application, leading to a surge in research focused on the preparation of related catalysts. High-entropy materials possess unique physicochemical properties, while carbon nanofiber materials are ideal catalyst carriers. In this study, high-entropy carbon nanofiber materials HCNF/HEA were successfully prepared through electrospinning technology and high-temperature heat treatment. Zinc was used to create defects, and Mn, Fe, Co, La, and Gd were employed as stable structural elements. The lattice distortion effect of high-entropy materials generates local strain fields, forming abundant active sites; the “cocktail effect” optimizes the electronic structure through the synergistic effect between elements. Carbon nanofiber materials, due to their high specific surface area, good conductivity, and tunable porous structure, are ideal catalyst carriers. Electrochemical performance evaluations indicate that HCNF/HEA exhibits excellent bifunctional oxygen catalysis activity (with an overpotential of 1.65 V and a positive half-wave potential of 0.795 V). Additionally, the assembled zinc-air battery demonstrates outstanding device performance, including a high power density of 120.01 mW?cm?2, a specific capacity of 797.68 mAh?g?1Zn, and excellent stability over 240 hours, surpassing the commercial benchmark Pt/C-based zinc-air batteries.
References
[1]
Coppez, G., Chowdhury, S. and Chowdhury, S.P. (2010) Impacts of Energy Storage in Distributed Power Generation: A Review. 2010 International Conference on Power System Technology, Zhejiang, 24-28 October 2010, 1-7. https://doi.org/10.1109/powercon.2010.5666075
[2]
Icer, K., Rahman, S. and Adhikari, K. (2024) Autoregressive Modeling of Time Series in Renewable Energy Systems. 2024 IEEE 15th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), Yorktown Heights, 17-19 October 2024, 372-378. https://doi.org/10.1109/uemcon62879.2024.10754746
[3]
Li, G., Zhang, J. and Yang, C. (2025) Recent Progress and Prospects of Hydrothermal Flames for Efficient and Clean Energy Conversion. JournalofCleanerProduction, 497, Article ID: 145170. https://doi.org/10.1016/j.jclepro.2025.145170
[4]
Reza Habib, A.K.M.R., Alam, M.M. and Islam, M.R. (2021) Design of a Mobile Aeration System for Aquaculture and Proof of Concept. 2021 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, 26-27 December 2021, 1-4. https://doi.org/10.1109/ic4me253898.2021.9768594
[5]
Luo, J. (2023) Prediction of Diabetes at Early Stage Using Machine Learning Algorithms. BCPBusiness&Management, 38, 1838-1843. https://doi.org/10.54691/bcpbm.v38i.3978
[6]
Li, G., Kujawski, W. and Rynkowska, E. (2020) Advancements in Proton Exchange Membranes for High-Performance High-Temperature Proton Exchange Membrane Fuel Cells (HT-PEMFC). ReviewsinChemicalEngineering, 38, 327-346. https://doi.org/10.1515/revce-2019-0079
[7]
Ma, Y., Chen, Y., Sun, M. and Zhang, Y. (2022) Physicochemical Properties of High‐entropy Oxides. TheChemicalRecord, 23, e202200195. https://doi.org/10.1002/tcr.202200195
[8]
Gu, X., Guo, X., Li, W., Jiang, Y., Liu, Q. and Tang, X. (2024) High-Entropy Materials for Application: Electricity, Magnetism, and Optics. ACSAppliedMaterials&Interfaces, 16, 53372-53392. https://doi.org/10.1021/acsami.4c11898
[9]
Kotsonis, G.N., Almishal, S.S.I., Marques dos Santos Vieira, F., Crespi, V.H., Dabo, I., Rost, C.M., et al. (2023) High-Entropy Oxides: Harnessing Crystalline Disorder for Emergent Functionality. JournaloftheAmericanCeramicSociety, 106, 5587-5611. https://doi.org/10.1111/jace.19252
[10]
Jia, C., Zhang, L., Peng, X., Luo, J., Zhao, Y., Liu, J., etal. (2019) Prediction of Entropy and Gibbs Free Energy for Nitrogen. ChemicalEngineeringScience, 202, 70-74. https://doi.org/10.1016/j.ces.2019.03.033
[11]
Wang, R., Tang, Y., Li, S., Ai, Y., Li, Y., Xiao, B., etal. (2020) Effect of Lattice Distortion on the Diffusion Behavior of High-Entropy Alloys. JournalofAlloysandCompounds, 825, Article ID: 154099. https://doi.org/10.1016/j.jallcom.2020.154099
[12]
Chang, C., Lu, Y. and Tuan, H. (2023) High-Entropy NaCl-Type Metal Chalcogenides as K-Ion Storage Materials: Role of the Cocktail Effect. EnergyStorageMaterials, 59, Article ID: 102770. https://doi.org/10.1016/j.ensm.2023.102770
[13]
Zhang, H., Tian, J., Cui, X., Li, J. and Zhu, Z. (2023) Highly Mesoporous Carbon Nanofiber Electrodes with Ultrahigh Specific Surface Area for Efficient Capacitive Deionization. Carbon, 201, 920-929. https://doi.org/10.1016/j.carbon.2022.10.002
[14]
Koderman Podboršek, G., Zupančič, Š., Kaufman, R., Surca, A.K., Marsel, A., Pavlišič, A., etal. (2022) Microstructure and Electrical Conductivity of Electrospun Titanium Oxynitride Carbon Composite Nanofibers. Nanomaterials, 12, Article 2177. https://doi.org/10.3390/nano12132177
[15]
Wang, M., Miao, X., Hou, C., Xu, K., Ke, Z., Dai, F., etal. (2024) Devisable Pore Structures and Tunable Thermal Management Properties of Aerogels Composed of Carbon Nanotubes and Cellulose Nanofibers with Various Aspect Ratios. CarbohydratePolymers, 323, Article ID: 121437. https://doi.org/10.1016/j.carbpol.2023.121437
[16]
Liang, K., Guo, W., Li, L., Cai, H., Zhang, H., Li, J., etal. (2024) Defect-induced Synthesis of Nanoscale Hierarchically Porous Metal-Organic Frameworks with Tunable Porosity for Enhanced Volatile Organic Compound Adsorption. Nano Materials Science, 6, 467-474. https://doi.org/10.1016/j.nanoms.2023.10.001
[17]
Gupta, S., Zhao, S., Ogoke, O., Lin, Y., Xu, H. and Wu, G. (2017) Engineering Favorable Morphology and Structure of F-N-C Oxygen-Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors. ChemSusChem, 10, 774-785. https://doi.org/10.1002/cssc.201601397
[18]
Liu, L., Hu, S. and Gao, K. (2020) Cellulose Nanofiber Based Flexible N-Doped Carbon Mesh for Energy Storage Electrode with Super Folding Endurance. MaterialsTodayEnergy, 17, Article ID: 100441. https://doi.org/10.1016/j.mtener.2020.100441
[19]
Zhang, J., Liu, Y., Elledge, H., Chen, H., Mannan, M.S. and Mashuga, C.V. (2017) Carbon Nanofiber Explosion Violence and Thermal Stability. Journal of Thermal AnalysisandCalorimetry, 129, 221-231. https://doi.org/10.1007/s10973-017-6120-z
[20]
Zhu, H., Zhu, Z., Hao, J., Sun, S., Lu, S., Wang, C., etal. (2022) High-Entropy Alloy Stabilized Active IR for Highly Efficient Acidic Oxygen Evolution. Chemical EngineeringJournal, 431, Article ID: 133251. https://doi.org/10.1016/j.cej.2021.133251
Song, J., Kim, C., Kim, M., Cho, K.M., Gereige, I., Jung, W., etal. (2021) Generation of High-Density Nanoparticles in the Carbothermal Shock Method. ScienceAdvances, 7, eabk2984. https://doi.org/10.1126/sciadv.abk2984
Choma, J., Jagiello, J. and Jaroniec, M. (2021) Assessing the Contribution of Micropores and Mesopores from Nitrogen Adsorption on Nanoporous Carbons: Application to Pore Size Analysis. Carbon, 183, 150-157. https://doi.org/10.1016/j.carbon.2021.07.020
[28]
Kang, J., Fu, X., Elsworth, D. and Liang, S. (2020) Impact of Nitrogen Injection on Pore Structure and Adsorption Capacity of High Volatility Bituminous Coal. Energy&Fuels, 34, 8216-8226. https://doi.org/10.1021/acs.energyfuels.0c01223
Byun, M., Kim, D., Sung, K., Jung, J., Song, Y., Park, S., etal. (2019) Characterization of Copper-Graphite Composites Fabricated via Electrochemical Deposition and Spark Plasma Sintering. AppliedSciences, 9, Article 2853. https://doi.org/10.3390/app9142853
[31]
Jin, M., Cheng, L., Zheng, W., Ding, Y., Zhu, Y., Jia, L., et al. (2021) Raman Tensor of Graphite: Symmetry of G, D and D’Phonons. Science China Materials, 65, 268-272. https://doi.org/10.1007/s40843-021-1741-0
[32]
Fernandez, V., Fairley, N. and Baltrusaitis, J. (2021) Unraveling Spectral Shapes of Adventitious Carbon on Gold Using a Time-Resolved High-Resolution X-Ray Photoelectron Spectroscopy and Principal Component Analysis. AppliedSurfaceScience, 538, Article ID: 148031. https://doi.org/10.1016/j.apsusc.2020.148031
[33]
Carvalho, A., Costa, M.C.F., Marangoni, V.S., Ng, P.R., Nguyen, T.L.H. and Castro Neto, A.H. (2021) The Degree of Oxidation of Graphene Oxide. Nanomaterials, 11, Article 560. https://doi.org/10.3390/nano11030560
[34]
Kelemen, S.R., Afeworki, M., Gorbaty, M.L., Kwiatek, P.J., Solum, M.S., Hu, J.Z., et al. (2002) XPS and 15N NMR Study of Nitrogen Forms in Carbonaceous Solids. Energy&Fuels, 16, 1507-1515. https://doi.org/10.1021/ef0200828
[35]
Wu, S., Wang, X., Zhu, Y., He, P., Yu, X., Qin, F., etal. (2023) Different Types of Nitrogen-Doped CQDs Loaded by Cop Used as OER Electrocatalysts. Inorganic ChemistryCommunications, 153, Article ID: 110872. https://doi.org/10.1016/j.inoche.2023.110872
[36]
Qi, C., Zhang, L., Xu, G., Sun, Z., Zhao, A. and Jia, D. (2018) Co@Co3O4 Nanoparticle Embedded Nitrogen-Doped Carbon Architectures as Efficient Bicatalysts for Oxygen Reduction and Evolution Reactions. AppliedSurfaceScience, 427, 319-327. https://doi.org/10.1016/j.apsusc.2017.08.209
[37]
Hartmann, S.J., Iurchenkova, A.A., Kallio, T. and Fedorovskaya, E.O. (2020) Electrochemical Properties of Nitrogen and Oxygen Doped Reduced Graphene Oxide. Energies, 13, Article 312. https://doi.org/10.3390/en13020312
[38]
Dahamni, M.A., Ghamnia, M., Naceri, S.E., Fauquet, C., Tonneau, D., Pireaux, J., etal. (2021) Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films. Coatings, 11, Article 598. https://doi.org/10.3390/coatings11050598
[39]
Lin, T., Seshadri, G. and Kelber, J.A. (1997) A Consistent Method for Quantitative XPS Peak Analysis of Thin Oxide Films on Clean Polycrystalline Iron Surfaces. AppliedSurfaceScience, 119, 83-92. https://doi.org/10.1016/s0169-4332(97)00167-0
[40]
Xu, X., Chen, Y., Zhou, W., Zhong, Y., Guan, D. and Shao, Z. (2018) Electrocatalysis: Earth‐abundant Silicon for Facilitating Water Oxidation over Iron‐Based Perovskite Electrocatalyst (Adv. Mater. Interfaces 11/2018). AdvancedMaterialsInterfaces, 5, Article ID: 1870051. https://doi.org/10.1002/admi.201870051
[41]
Laïk, B., Richet, M., Emery, N., Bach, S., Perrière, L., Cotrebil, Y., et al. (2024) XPS Investigation of Co-Ni Oxidized Compounds Surface Using Peak-On-Satellite Ratio. Application to Co20Ni80 Passive Layer Structure and Composition. ACSOmega, 9, 40707-40722. https://doi.org/10.1021/acsomega.4c05082
[42]
Xu, M., Lu, J., Sun, Z., Yang, M., Sheng, B., Chen, M., etal. (2024) Lanthanum Doping and Surface Li3Bo3 Passivating Layer Enabling 4.8 v Nickel-Rich Layered Oxide Cathodes toward High Energy Lithium-Ion Batteries. JournalofColloidandInterfaceScience, 673, 386-394. https://doi.org/10.1016/j.jcis.2024.05.236
[43]
Glorieux, B., Berjoan, R., Matecki, M., Kammouni, A. and Perarnau, D. (2007) XPS Analyses of Lanthanides Phosphates. AppliedSurfaceScience, 253, 3349-3359. https://doi.org/10.1016/j.apsusc.2006.07.027
[44]
Karuppaiah, B., Jeyaraman, A., Chen, S., Chavan, P.R., Karthik, R., Hasan, M., et al. (2023) Effect of Bismuth Doping on Zircon-Type Gadolinium Vanadate: Effective Electrocatalyst for Determination of Hazardous Herbicide Mesotrione. Chemosphere, 313, Article ID: 137543. https://doi.org/10.1016/j.chemosphere.2022.137543
[45]
Song, X., Schrade, M., Masó, N. and Finstad, T.G. (2017) Zn Vacancy Formation, Zn Evaporation and Decomposition of ZnSb at Elevated Temperatures: Influence on the Microstructure and the Electrical Properties. JournalofAlloysandCompounds, 710, 762-770. https://doi.org/10.1016/j.jallcom.2017.03.339