全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis of High Entropy Carbon Nanofibers and Study of Their Bifunctional Oxygen Performance

DOI: 10.4236/jpee.2025.136005, PP. 76-94

Keywords: High-Entropy Materials, Carbon Nanofiber Materials, Oxygen Reduction Reaction, Zinc-Air Battery, Electrospinning Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rechargeable zinc-air batteries (ZABs) represent a viable energy solution; however, the slow kinetics of the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) severely hinder their commercial application, leading to a surge in research focused on the preparation of related catalysts. High-entropy materials possess unique physicochemical properties, while carbon nanofiber materials are ideal catalyst carriers. In this study, high-entropy carbon nanofiber materials HCNF/HEA were successfully prepared through electrospinning technology and high-temperature heat treatment. Zinc was used to create defects, and Mn, Fe, Co, La, and Gd were employed as stable structural elements. The lattice distortion effect of high-entropy materials generates local strain fields, forming abundant active sites; the “cocktail effect” optimizes the electronic structure through the synergistic effect between elements. Carbon nanofiber materials, due to their high specific surface area, good conductivity, and tunable porous structure, are ideal catalyst carriers. Electrochemical performance evaluations indicate that HCNF/HEA exhibits excellent bifunctional oxygen catalysis activity (with an overpotential of 1.65 V and a positive half-wave potential of 0.795 V). Additionally, the assembled zinc-air battery demonstrates outstanding device performance, including a high power density of 120.01 mW?cm?2, a specific capacity of 797.68 mAh?g1Zn, and excellent stability over 240 hours, surpassing the commercial benchmark Pt/C-based zinc-air batteries.

References

[1]  Coppez, G., Chowdhury, S. and Chowdhury, S.P. (2010) Impacts of Energy Storage in Distributed Power Generation: A Review. 2010 International Conference on Power System Technology, Zhejiang, 24-28 October 2010, 1-7.
https://doi.org/10.1109/powercon.2010.5666075
[2]  Icer, K., Rahman, S. and Adhikari, K. (2024) Autoregressive Modeling of Time Series in Renewable Energy Systems. 2024 IEEE 15th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), Yorktown Heights, 17-19 October 2024, 372-378.
https://doi.org/10.1109/uemcon62879.2024.10754746
[3]  Li, G., Zhang, J. and Yang, C. (2025) Recent Progress and Prospects of Hydrothermal Flames for Efficient and Clean Energy Conversion. Journal of Cleaner Production, 497, Article ID: 145170.
https://doi.org/10.1016/j.jclepro.2025.145170
[4]  Reza Habib, A.K.M.R., Alam, M.M. and Islam, M.R. (2021) Design of a Mobile Aeration System for Aquaculture and Proof of Concept. 2021 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, 26-27 December 2021, 1-4.
https://doi.org/10.1109/ic4me253898.2021.9768594
[5]  Luo, J. (2023) Prediction of Diabetes at Early Stage Using Machine Learning Algorithms. BCP Business & Management, 38, 1838-1843.
https://doi.org/10.54691/bcpbm.v38i.3978
[6]  Li, G., Kujawski, W. and Rynkowska, E. (2020) Advancements in Proton Exchange Membranes for High-Performance High-Temperature Proton Exchange Membrane Fuel Cells (HT-PEMFC). Reviews in Chemical Engineering, 38, 327-346.
https://doi.org/10.1515/revce-2019-0079
[7]  Ma, Y., Chen, Y., Sun, M. and Zhang, Y. (2022) Physicochemical Properties of High‐entropy Oxides. The Chemical Record, 23, e202200195.
https://doi.org/10.1002/tcr.202200195
[8]  Gu, X., Guo, X., Li, W., Jiang, Y., Liu, Q. and Tang, X. (2024) High-Entropy Materials for Application: Electricity, Magnetism, and Optics. ACS Applied Materials & Interfaces, 16, 53372-53392.
https://doi.org/10.1021/acsami.4c11898
[9]  Kotsonis, G.N., Almishal, S.S.I., Marques dos Santos Vieira, F., Crespi, V.H., Dabo, I., Rost, C.M., et al. (2023) High-Entropy Oxides: Harnessing Crystalline Disorder for Emergent Functionality. Journal of the American Ceramic Society, 106, 5587-5611.
https://doi.org/10.1111/jace.19252
[10]  Jia, C., Zhang, L., Peng, X., Luo, J., Zhao, Y., Liu, J., et al. (2019) Prediction of Entropy and Gibbs Free Energy for Nitrogen. Chemical Engineering Science, 202, 70-74.
https://doi.org/10.1016/j.ces.2019.03.033
[11]  Wang, R., Tang, Y., Li, S., Ai, Y., Li, Y., Xiao, B., et al. (2020) Effect of Lattice Distortion on the Diffusion Behavior of High-Entropy Alloys. Journal of Alloys and Compounds, 825, Article ID: 154099.
https://doi.org/10.1016/j.jallcom.2020.154099
[12]  Chang, C., Lu, Y. and Tuan, H. (2023) High-Entropy NaCl-Type Metal Chalcogenides as K-Ion Storage Materials: Role of the Cocktail Effect. Energy Storage Materials, 59, Article ID: 102770.
https://doi.org/10.1016/j.ensm.2023.102770
[13]  Zhang, H., Tian, J., Cui, X., Li, J. and Zhu, Z. (2023) Highly Mesoporous Carbon Nanofiber Electrodes with Ultrahigh Specific Surface Area for Efficient Capacitive Deionization. Carbon, 201, 920-929.
https://doi.org/10.1016/j.carbon.2022.10.002
[14]  Koderman Podboršek, G., Zupančič, Š., Kaufman, R., Surca, A.K., Marsel, A., Pavlišič, A., et al. (2022) Microstructure and Electrical Conductivity of Electrospun Titanium Oxynitride Carbon Composite Nanofibers. Nanomaterials, 12, Article 2177.
https://doi.org/10.3390/nano12132177
[15]  Wang, M., Miao, X., Hou, C., Xu, K., Ke, Z., Dai, F., et al. (2024) Devisable Pore Structures and Tunable Thermal Management Properties of Aerogels Composed of Carbon Nanotubes and Cellulose Nanofibers with Various Aspect Ratios. Carbohydrate Polymers, 323, Article ID: 121437.
https://doi.org/10.1016/j.carbpol.2023.121437
[16]  Liang, K., Guo, W., Li, L., Cai, H., Zhang, H., Li, J., et al. (2024) Defect-induced Synthesis of Nanoscale Hierarchically Porous Metal-Organic Frameworks with Tunable Porosity for Enhanced Volatile Organic Compound Adsorption. Nano Materials Science, 6, 467-474.
https://doi.org/10.1016/j.nanoms.2023.10.001
[17]  Gupta, S., Zhao, S., Ogoke, O., Lin, Y., Xu, H. and Wu, G. (2017) Engineering Favorable Morphology and Structure of F-N-C Oxygen-Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors. ChemSusChem, 10, 774-785.
https://doi.org/10.1002/cssc.201601397
[18]  Liu, L., Hu, S. and Gao, K. (2020) Cellulose Nanofiber Based Flexible N-Doped Carbon Mesh for Energy Storage Electrode with Super Folding Endurance. Materials Today Energy, 17, Article ID: 100441.
https://doi.org/10.1016/j.mtener.2020.100441
[19]  Zhang, J., Liu, Y., Elledge, H., Chen, H., Mannan, M.S. and Mashuga, C.V. (2017) Carbon Nanofiber Explosion Violence and Thermal Stability. Journal of Thermal Analysis and Calorimetry, 129, 221-231.
https://doi.org/10.1007/s10973-017-6120-z
[20]  Zhu, H., Zhu, Z., Hao, J., Sun, S., Lu, S., Wang, C., et al. (2022) High-Entropy Alloy Stabilized Active IR for Highly Efficient Acidic Oxygen Evolution. Chemical Engineering Journal, 431, Article ID: 133251.
https://doi.org/10.1016/j.cej.2021.133251
[21]  Zhan, C., Xu, Y., Bu, L., Zhu, H., Feng, Y., Yang, T., et al. (2021) Subnanometer High-Entropy Alloy Nanowires Enable Remarkable Hydrogen Oxidation Catalysis. Nature Communications, 12, Article No. 6261.
https://doi.org/10.1038/s41467-021-26425-2
[22]  Song, J., Kim, C., Kim, M., Cho, K.M., Gereige, I., Jung, W., et al. (2021) Generation of High-Density Nanoparticles in the Carbothermal Shock Method. Science Advances, 7, eabk2984.
https://doi.org/10.1126/sciadv.abk2984
[23]  Yao, Y., Huang, Z., Xie, P., Lacey, S.D., Jacob, R.J., Xie, H., et al. (2018) Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles. Science, 359, 1489-1494.
https://doi.org/10.1126/science.aan5412
[24]  Shi, Y., Wang, Y., Li, S., Li, R., Cui, Y. and Wang, Y. (2022) Recrystallization Texture Analysis of FeCoNiCrMnAl0.5 High-Entropy Alloy Investigated by High-Energy X-Ray Diffraction. Metals, 12, Article 1674.
https://doi.org/10.3390/met12101674
[25]  Wei, W., Ge, H., Huang, L., Kuang, M., Al-Enizi, A.M., Zhang, L., et al. (2017) Hierarchically Tubular Nitrogen-Doped Carbon Structures for the Oxygen Reduction Reaction. Journal of Materials Chemistry A, 5, 13634-13638.
https://doi.org/10.1039/c7ta02658g
[26]  Chang, C., Hsiao, Y., Chen, Y., Tsai, C., Lee, Y., Ko, P., et al. (2022) Lattice Distortion or Cocktail Effect Dominates the Performance of Tantalum-Based High-Entropy Nitride Coatings. Applied Surface Science, 577, Article ID: 151894.
https://doi.org/10.1016/j.apsusc.2021.151894
[27]  Choma, J., Jagiello, J. and Jaroniec, M. (2021) Assessing the Contribution of Micropores and Mesopores from Nitrogen Adsorption on Nanoporous Carbons: Application to Pore Size Analysis. Carbon, 183, 150-157.
https://doi.org/10.1016/j.carbon.2021.07.020
[28]  Kang, J., Fu, X., Elsworth, D. and Liang, S. (2020) Impact of Nitrogen Injection on Pore Structure and Adsorption Capacity of High Volatility Bituminous Coal. Energy & Fuels, 34, 8216-8226.
https://doi.org/10.1021/acs.energyfuels.0c01223
[29]  Zhang, G., Cheng, X., Yang, D., Yu, G., Ma, H., Wang, J., et al. (2019) Loofa Sponage Derived Multi-Tubular CuO/CeO2-ZrO2 with Hierarchical Porous Structure for Effective Soot Catalytic Oxidation. Fuel, 258, Article ID: 116202.
https://doi.org/10.1016/j.fuel.2019.116202
[30]  Byun, M., Kim, D., Sung, K., Jung, J., Song, Y., Park, S., et al. (2019) Characterization of Copper-Graphite Composites Fabricated via Electrochemical Deposition and Spark Plasma Sintering. Applied Sciences, 9, Article 2853.
https://doi.org/10.3390/app9142853
[31]  Jin, M., Cheng, L., Zheng, W., Ding, Y., Zhu, Y., Jia, L., et al. (2021) Raman Tensor of Graphite: Symmetry of G, D and D’Phonons. Science China Materials, 65, 268-272.
https://doi.org/10.1007/s40843-021-1741-0
[32]  Fernandez, V., Fairley, N. and Baltrusaitis, J. (2021) Unraveling Spectral Shapes of Adventitious Carbon on Gold Using a Time-Resolved High-Resolution X-Ray Photoelectron Spectroscopy and Principal Component Analysis. Applied Surface Science, 538, Article ID: 148031.
https://doi.org/10.1016/j.apsusc.2020.148031
[33]  Carvalho, A., Costa, M.C.F., Marangoni, V.S., Ng, P.R., Nguyen, T.L.H. and Castro Neto, A.H. (2021) The Degree of Oxidation of Graphene Oxide. Nanomaterials, 11, Article 560.
https://doi.org/10.3390/nano11030560
[34]  Kelemen, S.R., Afeworki, M., Gorbaty, M.L., Kwiatek, P.J., Solum, M.S., Hu, J.Z., et al. (2002) XPS and 15N NMR Study of Nitrogen Forms in Carbonaceous Solids. Energy & Fuels, 16, 1507-1515.
https://doi.org/10.1021/ef0200828
[35]  Wu, S., Wang, X., Zhu, Y., He, P., Yu, X., Qin, F., et al. (2023) Different Types of Nitrogen-Doped CQDs Loaded by Cop Used as OER Electrocatalysts. Inorganic Chemistry Communications, 153, Article ID: 110872.
https://doi.org/10.1016/j.inoche.2023.110872
[36]  Qi, C., Zhang, L., Xu, G., Sun, Z., Zhao, A. and Jia, D. (2018) Co@Co3O4 Nanoparticle Embedded Nitrogen-Doped Carbon Architectures as Efficient Bicatalysts for Oxygen Reduction and Evolution Reactions. Applied Surface Science, 427, 319-327.
https://doi.org/10.1016/j.apsusc.2017.08.209
[37]  Hartmann, S.J., Iurchenkova, A.A., Kallio, T. and Fedorovskaya, E.O. (2020) Electrochemical Properties of Nitrogen and Oxygen Doped Reduced Graphene Oxide. Energies, 13, Article 312.
https://doi.org/10.3390/en13020312
[38]  Dahamni, M.A., Ghamnia, M., Naceri, S.E., Fauquet, C., Tonneau, D., Pireaux, J., et al. (2021) Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films. Coatings, 11, Article 598.
https://doi.org/10.3390/coatings11050598
[39]  Lin, T., Seshadri, G. and Kelber, J.A. (1997) A Consistent Method for Quantitative XPS Peak Analysis of Thin Oxide Films on Clean Polycrystalline Iron Surfaces. Applied Surface Science, 119, 83-92.
https://doi.org/10.1016/s0169-4332(97)00167-0
[40]  Xu, X., Chen, Y., Zhou, W., Zhong, Y., Guan, D. and Shao, Z. (2018) Electrocatalysis: Earth‐abundant Silicon for Facilitating Water Oxidation over Iron‐Based Perovskite Electrocatalyst (Adv. Mater. Interfaces 11/2018). Advanced Materials Interfaces, 5, Article ID: 1870051.
https://doi.org/10.1002/admi.201870051
[41]  Laïk, B., Richet, M., Emery, N., Bach, S., Perrière, L., Cotrebil, Y., et al. (2024) XPS Investigation of Co-Ni Oxidized Compounds Surface Using Peak-On-Satellite Ratio. Application to Co20Ni80 Passive Layer Structure and Composition. ACS Omega, 9, 40707-40722.
https://doi.org/10.1021/acsomega.4c05082
[42]  Xu, M., Lu, J., Sun, Z., Yang, M., Sheng, B., Chen, M., et al. (2024) Lanthanum Doping and Surface Li3Bo3 Passivating Layer Enabling 4.8 v Nickel-Rich Layered Oxide Cathodes toward High Energy Lithium-Ion Batteries. Journal of Colloid and Interface Science, 673, 386-394.
https://doi.org/10.1016/j.jcis.2024.05.236
[43]  Glorieux, B., Berjoan, R., Matecki, M., Kammouni, A. and Perarnau, D. (2007) XPS Analyses of Lanthanides Phosphates. Applied Surface Science, 253, 3349-3359.
https://doi.org/10.1016/j.apsusc.2006.07.027
[44]  Karuppaiah, B., Jeyaraman, A., Chen, S., Chavan, P.R., Karthik, R., Hasan, M., et al. (2023) Effect of Bismuth Doping on Zircon-Type Gadolinium Vanadate: Effective Electrocatalyst for Determination of Hazardous Herbicide Mesotrione. Chemosphere, 313, Article ID: 137543.
https://doi.org/10.1016/j.chemosphere.2022.137543
[45]  Song, X., Schrade, M., Masó, N. and Finstad, T.G. (2017) Zn Vacancy Formation, Zn Evaporation and Decomposition of ZnSb at Elevated Temperatures: Influence on the Microstructure and the Electrical Properties. Journal of Alloys and Compounds, 710, 762-770.
https://doi.org/10.1016/j.jallcom.2017.03.339

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133