全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Core-Shell VN@PCNs Nanoreactors as Cathode Materials for High-Performance Aqueous Zinc Ion Batteries

DOI: 10.4236/jpee.2025.136004, PP. 65-75

Keywords: Vanadium Nitride, Aqueous Zinc Ion Batteries, Core-Shell Structure, Nanoreactor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aqueous zinc ion water batteries (AZIBs) have attracted much attention due to their high safety, lo w cost, and environmental friendliness, but their cathode materials still face challenges in terms of volume change, reaction kinetics, and structural stability. In this study, vanadium nitride/nitrogen-doped carbon (VN@PCNs) nanoreactors with a core-shell structure were successfully constructed by encapsulating VN nanorods in porous hollow carbon spheres through a synergistic optimization strategy of interfacial engineering and structural modulation. This structure of the nanoreactor significantly reduces the dissolution and structural collapse of the active material, thus maintaining the stability of the electrode structure during multiple charge/discharge cycles. Meanwhile, the concentration gradient formed inside and outside the core-shell structure significantly enhances the diffusion of hydrated zinc ions, effectively improving the slow desolvation rate. Thanks to these advantages, the electrode can still maintain a specific capacity of up to 328 mAh g?1 after 500 cycles at a current density of 3 A g?1, which provides a valuable research direction for the subsequent development of zinc ion batteries.

References

[1]  Lv, Y., Xiao, Y., Ma, L., Zhi, C. and Chen, S. (2021) Recent Advances in Electrolytes for “Beyond Aqueous” Zinc‐Ion Batteries. Advanced Materials, 34, Article 2106409.
https://doi.org/10.1002/adma.202106409
[2]  Yuan, Y., Wu, S., Song, X., Lee, J.Y. and Kang, B. (2023) Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc‐Ion Batteries. Energy & Environmental Materials, 7, e12632.
https://doi.org/10.1002/eem2.12632
[3]  Zhao, J., Wang, Q., Tan, F., Liu, Y., Xue, X., Li, M., et al. (2023) Highly Flexible and Compressible Zinc-Ion Batteries with Superb Electrochemical Performance Enabled by a Dual Structural Regulation Strategy. Energy Storage Materials, 56, 478-488.
https://doi.org/10.1016/j.ensm.2023.01.040
[4]  Zhang, N., Cheng, F., Liu, Y., Zhao, Q., Lei, K., Chen, C., et al. (2016) Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. Journal of the American Chemical Society, 138, 12894-12901.
https://doi.org/10.1021/jacs.6b05958
[5]  Xia, J., Zhou, Y., Zhang, J., Lu, T., Gong, W., Zhang, D., et al. (2023) Triggering High Capacity and Superior Reversibility of Manganese Oxides Cathode via Magnesium Modulation for Zn//MnO2 Batteries. Small, 19, Article 2301906.
https://doi.org/10.1002/smll.202301906
[6]  Liu, Y., Liu, Y., Wu, X. and Cho, Y. (2022) Enhanced Electrochemical Performance of Zn/VOx Batteries by a Carbon-Encapsulation Strategy. ACS Applied Materials & Interfaces, 14, 11654-11662.
https://doi.org/10.1021/acsami.2c00001
[7]  Wang, T., Sun, J., Hua, Y., Krishna, B.N.V., Xi, Q., Ai, W., et al. (2022) Planar and Dendrite-Free Zinc Deposition Enabled by Exposed Crystal Plane Optimization of Zinc Anode. Energy Storage Materials, 53, 273-304.
https://doi.org/10.1016/j.ensm.2022.08.046
[8]  Chen, X., Sun, W. and Wang, Y. (2020) Covalent Organic Frameworks for Next‐Generation Batteries. ChemElectroChem, 7, 3905-3926.
https://doi.org/10.1002/celc.202000963
[9]  Shuai, H., Xu, J. and Huang, K. (2020) Progress in Retrospect of Electrolytes for Secondary Magnesium Batteries. Coordination Chemistry Reviews, 422, Article 213478.
https://doi.org/10.1016/j.ccr.2020.213478
[10]  Han, J., Yang, J., Xu, Z., Li, H. and Wang, J. (2022) Dramatic Improvement in High-Rate Capability of LiMnPO4 Nanosheets via Crystallite Size Regulation. Journal of Alloys and Compounds, 894, Article 162510.
https://doi.org/10.1016/j.jallcom.2021.162510
[11]  Wan, F., Zhang, L., Dai, X., Wang, X., Niu, Z. and Chen, J. (2018) Aqueous Rechargeable Zinc/Sodium Vanadate Batteries with Enhanced Performance from Simultaneous Insertion of Dual Carriers. Nature Communications, 9, Article No. 1656.
https://doi.org/10.1038/s41467-018-04060-8
[12]  Yang, H., Ning, P., Wen, J., Xie, Y., Su, C., Li, Y., et al. (2021) Structure Control in VNxOy by Hydrogen Bond Association Extraction for Enhanced Zinc Ion Storage. Electrochimica Acta, 389, Article 138722.
https://doi.org/10.1016/j.electacta.2021.138722
[13]  Long, Y., An, X., Yang, Y., Yang, J., Liu, L., Tong, X., et al. (2025) Gradient Porous Carbon Superstructures for High‐Efficiency Charge Storage Kinetics. Advanced Functional Materials, Article 2424551.
https://doi.org/10.1002/adfm.202424551
[14]  Zhang, Y., Chen, A. and Sun, J. (2021) Promise and Challenge of Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries. Journal of Energy Chemistry, 54, 655-667.
https://doi.org/10.1016/j.jechem.2020.06.013
[15]  Zhang, W., Liang, S., Fang, G., Yang, Y. and Zhou, J. (2019) Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Nano-Micro Letters, 11, Article No. 69.
https://doi.org/10.1007/s40820-019-0300-2
[16]  Liu, Y., Li, Q., Ma, K., Yang, G. and Wang, C. (2019) Graphene Oxide Wrapped CuV2O6 Nanobelts as High-Capacity and Long-Life Cathode Materials of Aqueous Zinc-Ion Batteries. ACS Nano, 13, 12081-12089.
https://doi.org/10.1021/acsnano.9b06484
[17]  Wang, N., Zhang, W., Li, Z., Wang, S., Suwardi, A., Ye, E., et al. (2022) Dual-Electric-polarity Augmented Cyanoethyl Cellulose-Based Triboelectric Nanogenerator with Ultra-High Triboelectric Charge Density and Enhanced Electrical Output Property at High Humidity. Nano Energy, 103, Article 107748.
https://doi.org/10.1016/j.nanoen.2022.107748
[18]  Li, X., Lin, Z., Jin, N., Yang, X., Du, Y., Lei, L., et al. (2021) Perovskite‐Type SrVO3 as High‐Performance Anode Materials for Lithium‐Ion Batteries. Advanced Materials, 34, Article 2107262.
https://doi.org/10.1002/adma.202107262
[19]  Li, S., Zhuang, Z., Xia, L., Zhu, J., Liu, Z., He, R., et al. (2023) Improving the Electrophilicity of Nitrogen on Nitrogen-Doped Carbon Triggers Oxygen Reduction by Introducing Covalent Vanadium Nitride. Science China Materials, 66, 160-168.
https://doi.org/10.1007/s40843-022-2116-3
[20]  Xie, X., Fang, G., Xu, W., Li, J., Long, M., Liang, S., et al. (2021) In Situ Defect Induction in Close‐Packed Lattice Plane for the Efficient Zinc Ion Storage. Small, 17, Article 2101944.
https://doi.org/10.1002/smll.202101944
[21]  Luo, H., Wang, B., Wu, F., Jian, J., Yang, K., Jin, F., et al. (2021) Synergistic Nanostructure and Heterointerface Design Propelled Ultra-Efficient In-Situ Self-Transformation of Zinc-Ion Battery Cathodes with Favorable Kinetics. Nano Energy, 81, Article 105601.
https://doi.org/10.1016/j.nanoen.2020.105601
[22]  Yang, X., Chen, S., Gong, W., Meng, X., Ma, J., Zhang, J., et al. (2020) Kinetic Enhancement of Sulfur Cathodes by N‐Doped Porous Graphitic Carbon with Bound VN Nanocrystals. Small, 16, Article 2004950.
https://doi.org/10.1002/smll.202004950
[23]  Chen, D., Lu, M., Li, L., Cai, D., Li, J., Cao, J., et al. (2019) Hierarchical Core-Shell Structural NiMoO4@NiS2/MoS2 Nanowires Fabricated via an in Situ Sulfurization Method for High Performance Asymmetric Supercapacitors. Journal of Materials Chemistry A, 7, 21759-21765.
https://doi.org/10.1039/c9ta07731f
[24]  Zhang, K., Hu, Z., Liu, X., Tao, Z. and Chen, J. (2015) Fese2 Microspheres as a High‐Performance Anode Material for Na‐Ion Batteries. Advanced Materials, 27, 3305-3309.
https://doi.org/10.1002/adma.201500196

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133