Within the West African Craton, the Baoulé-Mossi domain is known for its potential in mineral resource among which, lithium now occupies an important place. Tied to pegmatite facies, the lithium is beared by spodumene (LiAlSi2O6) mineral. In southern Mali, pegmatites are located in the Bougouni Pegmatite Province (BPP) and are generally hosted within magmatic (e.g., granodiorites, monzogranites etc.) or metamorphic formations. This province is classified as one of the most important Lithium-bearing in Africa. However, the poor knowledge on their repartition and the thickness of soil cover constitutes a handicap to their characterization. It is why available aeromagnetic data have been used to identify the probable areas for pegmatite intrusive which are followed on the ground. This study requires understanding pegmatites distribution and their spatial relationships with the host rocks in the Bougouni area. For this, aeromagnetic data interpretation has been integrated with field geological descriptions. This study has allowed to understand that pegmatites dykes of Bougouni are low or even non-existent magnetic signature. It was also established that these pegmatite dykes are contained in metasedimentary and granitoid rocks which have moderate to high magnetic response.
References
[1]
Markwitz, V., Hein, K.A.A., Jessell, M.W. and Miller, J. (2016) Metallogenic Portfolio of the West Africa Craton. OreGeologyReviews, 78, 558-563. https://doi.org/10.1016/j.oregeorev.2015.10.024
[2]
Kone, A.Y., Nasr, I.H., Belkheria, W., Inoubli, M.H., Amiri, A. and Ly, S. (2019) Structural Setting of Western Mali Insights from Magnetic Data Analysis. In: Sundararajan, N., et al., Eds., On Significant Applications of Geophysical Methods, Springer International Publishing, 25-27. https://doi.org/10.1007/978-3-030-01656-2_5
[3]
Koné, A.Y., Nasr, I.H., Amiri, A., Inoubli, M.H., Belkhiria, W., Denon, A., Sangaré, S. and Ly, S. (2024) Geophysical Responses of Paleoproterozoic Rocks and Structures in Western Mali: Magnetic and Electromagnetics Data Analysis. In: Bezzeghoud, M., et al., Eds., Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology, Springer, 207-210.
[4]
Hamdi Nasr, I., Youssouf Koné, A., Belkhiria, W., Amiri, A., Denon, A., Sangaré, S., et al. (2025) Structural Controls of Gold Mineralisation in Birrimian Structures, Western Mali: Insights from Magnetic Data Analysis. AllEarth, 37, 1-13. https://doi.org/10.1080/27669645.2025.2479992
[5]
Feybesse, J.M., Sidibé, Y.T., Konaté, C.M., Lacomme, A., Zammits, C., Lambert, A., Guerrot, C., Liégois, J.P., Waele, B.D., Miehe, J.M., et al. (2006) Projet de Cartographie Géologique du Birimien Malien-Rapport techniques. Ministères des Mines, de l’Energie et de l’Eau.
[6]
Potrel, A., Peucat, J.J. and Fanning, C.M. (1998) Archean Crustal Evolution of the West African Craton: Example of the Amsaga Area (Reguibat Rise). U-Pb and Sm-Nd Evidence for Crustal Growth and Recycling. PrecambrianResearch, 90, 107-117. https://doi.org/10.1016/s0301-9268(98)00044-8
[7]
Traore, E.M., Olatunji, A.S., Sidibe, M., Konate, S.I.M., Kouagou N’dah, N.D. and Lemewihbwen Ngiamte, G. (2025) Geological Setting, Geochemistry and Mineralogy of Lithium Bearing Pegmatites in South Western Mali, West Africa; a Review. Geology, Ecology, andLandscapes. https://doi.org/10.1080/24749508.2025.2449623
[8]
Traoré, D.Y., Sanogo, S., Koné, A.Y., N’Diaye, I., Bouaré, M.L. and Béziat, D. (2022) Geochemistry of Magmatic Rocks of the Syama Belt, Southern Mali, West African Craton. OpenJournalofGeology, 12, 250-272. https://doi.org/10.4236/ojg.2022.123014
[9]
Traore, B., Ouattara, G., Allialy, M.E., Wane, O., Njikam, M.M.N., Kone, A.Y., et al. (2023) Aeromagnetic Imagery as a Tool to Help Identify the Structures Controlling the Emplacement of the Kenieba Kimberlite Pipes (Western Mali, West African Craton). OpenJournalofGeology, 13, 1177-1194. https://doi.org/10.4236/ojg.2023.1311050
[10]
Chalokwu, C.I., Ghazi, M.A. and Foord, E.E. (1997) Geochemical Characteristics and K-Ar Ages of Rare-Metal Bearing Pegmatites from the Birimian of Southeastern Ghana. JournalofAfricanEarthSciences, 24, 1-9. https://doi.org/10.1016/s0899-5362(97)00022-5
[11]
Brou, J.K., Van Lichtervelde, M., Kouamelan, N.A., Baratoux, D. and Thébaud, N. (2022) Petrogenetic Relationships between Peraluminous Granites and Li-Cs-Ta Rich Pegmatites in South Issia Zone (Central-West of Côte D’ivoire): Petrography, Mineralogy, Geochemistry and Zircon U-Pb Geochronology. MineralogyandPetrology, 116, 443-471. https://doi.org/10.1007/s00710-022-00790-2
[12]
Adingra, M.P.K., Ouattara, Z., Boya, T.K.L.D., Yapo, A.J., Brou, K.J. and Kouassi, B.R. (2023) Petrography and Geochemical Signatures of Pegmatites from the Southeastern Part Comoé Basin (south-East Côte D’ivoire, North Alépé). JournalofGeography, EnvironmentandEarthScienceInternational, 27, 51-68. https://doi.org/10.9734/jgeesi/2023/v27i4680
[13]
Bonzi, W.M., Vanderhaeghe, O., Van Lichtervelde, M., Wenmenga, U., André-Mayer, A., Salvi, S., et al. (2021) Petrogenetic Links between Rare Metal-Bearing Pegmatites and TTG Gneisses in the West African Craton: The Mangodara District of SW Burkina Faso. PrecambrianResearch, 364, Article ID: 106359. https://doi.org/10.1016/j.precamres.2021.106359
[14]
Abdourahamane Attourabi, S., Ahmed, Y. and Mamane Hallarou, M. (2021) Origin and Emplacement Conditions of the Dibilo Lithiniferous Mineralization (Liptako, Western Niger). InternationalJournalofScienceandResearch, 10, 55-71. https://doi.org/10.21275/sr21917211430
[15]
Sanogo S., Durand C., Dubois M. and Wane O., (2021) Structural Constraints of the Birimian Lithium Pegmatites of Bougouni (Southern Mali, Leo-Man Shield), EGU General Assembly Online, EGU21-6752.
[16]
Wilde, A., Otto, A. and McCracken, S. (2021) Geology of the Goulamina Spodumene Pegmatite Field, Mali. OreGeologyReviews, 134, Article ID: 104162. https://doi.org/10.1016/j.oregeorev.2021.104162
[17]
Traore, E.M., Olatunji, A.S., Sidibe, M., Ohiani, U.A., Konate, S.I.M. and Kouagou N’dah, N.D. (2025) Discriminating Lithological Units and Alteration Zones of Bougouni Area Using Remote Technology: Implication for Pegmatite Mapping. JournaloftheIndianSocietyofRemoteSensing, 53, 2331-2356. https://doi.org/10.1007/s12524-025-02154-7
[18]
Kouamelan, A.N., Delor, C. and Peucat, J. (1997) Geochronological Evidence for Reworking of Archean Terrains during the Early Proterozoic (2.1 Ga) in the Western Coˆte D’ivoire (Man Rise-West African Craton). PrecambrianResearch, 86, 177-199. https://doi.org/10.1016/s0301-9268(97)00043-0
[19]
Kouyaté, D., Söderlund, U., Youbi, N., Ernst, R., Hafid, A., Ikenne, M., et al. (2013) U-Pb Baddeleyite and Zircon Ages of 2040Ma, 1650Ma and 885Ma on Dolerites in the West African Craton (Anti-Atlas Inliers): Possible Links to Break-Up of Precambrian Supercontinents. Lithos, 174, 71-84. https://doi.org/10.1016/j.lithos.2012.04.028
[20]
Masurel, Q., Eglinger, A., Thébaud, N., Allibone, A., André-Mayer, A., McFarlane, H., et al. (2021) Paleoproterozoic Gold Events in the Southern West African Craton: Review and Synopsis. MineraliumDeposita, 57, 513-537. https://doi.org/10.1007/s00126-021-01052-5
[21]
Parra-Avila, L.A., Kemp, A.I.S., Fiorentini, M.L., Belousova, E., Baratoux, L., Block, S., et al. (2017) The Geochronological Evolution of the Paleoproterozoic Baoulé-Mossi Domain of the Southern West African Craton. PrecambrianResearch, 300, 1-27. https://doi.org/10.1016/j.precamres.2017.07.036
[22]
Thiéblemont, D. (2001) A 3.5 Ga Granite-Gneiss Basement in Guinea: Further Evidence for Early Archean Accretion within the West African Craton. PrecambrianResearch, 108, 179-194. https://doi.org/10.1016/s0301-9268(00)00160-1
[23]
Wane, O., Liégeois, J., Thébaud, N., Miller, J., Metelka, V. and Jessell, M. (2018) The Onset of the Eburnean Collision with the Kenema-Man Craton Evidenced by Plutonic and Volcanosedimentary Rock Record of the Masssigui Region, Southern Mali. PrecambrianResearch, 305, 444-478. https://doi.org/10.1016/j.precamres.2017.11.008
[24]
Chardon, D., Bamba, O. and Traoré, K. (2020) Eburnean Deformation Pattern of Burkina Faso and the Tectonic Significance of Shear Zones in the West African Craton. BSGF-EarthSciencesBulletin, 191, Article No. 2. https://doi.org/10.1051/bsgf/2020001
[25]
Eglinger, A., André-Mayer, A., Thébaud, N. and Masurel, Q. (2022) La province métallogénique du craton de Leo-Man en Afrique de l’Ouest. In: Ressourcesmétalliques 2, ISTE Group, 257-296. https://doi.org/10.51926/iste.9136.ch5
[26]
Traoré, K., Chardon, D., Naba, S., Wane, O. and Bouaré, M.L. (2022) Paleoproterozoic Collision Tectonics in West Africa: Insights into the Geodynamics of Continental Growth. PrecambrianResearch, 376, Article ID: 106692. https://doi.org/10.1016/j.precamres.2022.106692
[27]
Feybesse, J. and Milési, J. (1994) The Archaean/Proterozoic Contact Zone in West Africa: A Mountain Belt of Décollement Thrusting and Folding on a Continental Margin Related to 2.1 Ga Convergence of Archaean Cratons? PrecambrianResearch, 69, 199-227. https://doi.org/10.1016/0301-9268(94)90087-6
[28]
Dentith, M. and Mudge, S.T. (2014) Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press. https://doi.org/10.1017/cbo9781139024358
[29]
Spector, A. and Grant, F.S. (1970) Statistical Models for Interpreting Aeromagnetic Data. Geophysics, 35, 293-302. https://doi.org/10.1190/1.1440092
[30]
Guo, L., Shi, L. and Meng, X. (2013) The Antisymmetric Factor Method for Magnetic Reduction to the Pole at Low Latitudes. JournalofAppliedGeophysics, 92, 103-109. https://doi.org/10.1016/j.jappgeo.2013.02.018
[31]
Jacobsen, B.H. (1987) A Case for Upward Continuation as a Standard Separation Filter for Potential‐Field Maps. Geophysics, 52, 1138-1148. https://doi.org/10.1190/1.1442378
[32]
Hsu, H., Huang, J., Shu, H., Baichwal, V. and Goeddel, D.V. (1996) TNF-Dependent Recruitment of the Protein Kinase RIP to the TNF Receptor-1 Signaling Complex. Immunity, 4, 387-396. https://doi.org/10.1016/s1074-7613(00)80252-6
[33]
Salem, A., Williams, S., Fairhead, D., Smith, R. and Ravat, D. (2008) Interpretation of Magnetic Data Using Tilt-Angle Derivatives. Geophysics, 73, L1-L10. https://doi.org/10.1190/1.2799992
[34]
Verduzco, B., Fairhead, J.D., Green, C.M. and MacKenzie, C. (2004) New Insights into Magnetic Derivatives for Structural Mapping. TheLeadingEdge, 23, 116-119. https://doi.org/10.1190/1.1651454
[35]
Haase, C. and Pohl, C.M. (2022) Petrophysical Database for European Pegmatite Exploration—Europeg. Minerals, 12, Article No. 1498. https://doi.org/10.3390/min12121498
[36]
Leväniemi, H. (2013) Lithium Pegmatite Prospectivity Modelling in Som-Ero-Tammela Area, Southern Finland. GTK.
[37]
Phelps-Barber, Z., Trench, A. and Groves, D.I. (2022) Recent Pegmatite-Hosted Spodumene Discoveries in Western Australia: Insights for Lithium Exploration in Australia and Globally. AppliedEarthScience, 131, 100-113. https://doi.org/10.1080/25726838.2022.2065450
[38]
Steiner, B. (2019) Tools and Workflows for Grassroots Li-Cs-Ta (LCT) Pegmatite Exploration. Minerals, 9, Article No. 499. https://doi.org/10.3390/min9080499
[39]
Sanogo, S. (2022) Pegmatites lithinifères (Li-Cs-Ta) et roches plutoniques de Bou-gouni (Sud du Mali, Craton Ouest-Africain): Approches pétrographiques, structurales, géochimiques et géochronologiques. Université de Lille.