This paper is our evaluation of the astrobiological significance of recent findings secured using the James Webb Telescope on the “biomarker” composition in the atmosphere of the Earth-like exoplanet, K2 18b. Thus, to put this finding in perspective, we briefly review a wide range of recent studies these past 45 - 50 years from astronomy, space research and biology that converge towards the validity of a cosmic model for the origin and evolution of life—involving biological processes more akin to acquired Lamarckian rapid adaptation genetic processes. These also include Horizontal Gene Transfers rather than the traditionally understood (and ponderous) Darwinian natural selection processes. Indeed, there is extensive evidence for extant rapid Lamarckian and Lamarckian-like acquired inheritance processes in the biosphere of our planet Earth. Further, an important astronomical and astrobiological finding that puts the K2 18b discovery in context is the early 1980s discovery that the extinction spectrum of intact living bacterial cells in the large interstellar dust clouds detected from an emitting electromagnetic source near the centre of our galaxy (GC-IRS7, 23 K light years) over the mid infrared wavelength range 3 - 4 u. That key finding and many others combined to put in perspective the recent discoveries of life-associated products dimethyl sulphide and dimethyl disulphide in the atmosphere of K2-18b (120 light-years). These data add to the body of work of the new perspectives on a cosmos likely to be teeming with life in many cosmic niches.
References
[1]
Steele, E.J., Al-Mufti, S., Augustyn, K.A., et al. (2018) Cause of Cambrian Explosion—Terrestrial or Cosmic? Progress in Biophysics and Molecular Biology, 136, 3-23. https://doi.org/10.1016/j.pbiomolbio.2018.03.004
[2]
Steele, E.J., Gorczynski, R.M., Lindley, R.A., Liu, Y., Temple, R., Tokoro, G., et al. (2019) Lamarck and Panspermia—On the Efficient Spread of Living Systems throughout the Cosmos. Progress in Biophysics and Molecular Biology, 149, 10-32. https://doi.org/10.1016/j.pbiomolbio.2019.08.010
[3]
Hoyle, F. and Wickramasinghe, N.C. (1981) Evolution from Space. J.M. Dent & Sons.
[4]
Hoyle, F. and Wickramasinghe, N.C. (1999) Panspermia 2000. Astrophysics and Space Science, 268, 1-17. https://link.springer.com/article/10.1023/A:1017276114646
[5]
Carniani, S., Hainline, K., D’Eugenio, F., Eisenstein, D.J., Jakobsen, P., Witstok, J., et al. (2024) Spectroscopic Confirmation of Two Luminous Galaxies at a Redshift of 14. Nature, 633, 318-322. https://doi.org/10.1038/s41586-024-07860-9
[6]
Bondi, H. and Gold, T. (1948) The Steady-State Theory of the Expanding Universe. Monthly Notices of the Royal Astronomical Society, 108, 252-270. https://doi.org/10.1093/mnras/108.3.252
[7]
Hoyle, F. (1948) A New Model for the Expanding Universe. Monthly Notices of the Royal Astronomical Society, 108, 372-382. https://doi.org/10.1093/mnras/108.5.372
[8]
Harris, M.J., Wickramasinghe, N.C., Lloyd, D., Narlikar, J.V., Rajaratnam, P., Turner, M.P., et al. (2002) SPIE Proceedings. https://doi.org/10.1117/12.454758
[9]
Wickramasinghe, N.C. and Rycroft, M.J. (1918) On the Difficulty of the Transport of Electrically Charged Submicron Dust from the Earth’s Surface to the High Ionosphere. Advanced Astrophysics, 3, 150-153. https://doi.org/10.22606/adap.2018.33003
[10]
Grebennikova, T.V., Syroeshkin, A.V., Shubralova, E.V., Eliseeva, O.V., Kostina, L.V., Kulikova, N.Y., et al. (2018) The DNA of Bacteria of the World Ocean and the Earth in Cosmic Dust at the International Space Station. The Scientific World Journal, 2018, Article ID 7360147. https://doi.org/10.1155/2018/7360147
[11]
Wickramasinghe, N.C., Rycroft, M., Wickramasinghe, D.T., et al. (2018) Confirmation of Microbial Ingress from Space. Advanced Astrophysics, 3, 266-270. https://doi.org/10.22606/adap.2018.34006
[12]
Hoyle, F., Wickramasinghe, N.C., Al-Mufti, S., Olavesen, A.H. and Wickramasinghe, D.T. (1982) Infrared Spectroscopy over the 2.9-3.9 μm Waveband in Biochemistry and Astronomy. Astrophysics and Space Science, 83, 405-409. https://doi.org/10.1007/bf00648568
[13]
Okuda, H., Shibai, H., Nakagawa, T., Matsuhara, H., Kobayashi, Y., Kaifu, N., et al. (1990) An Infrared Quintuplet near the Galactic Center. The Astrophysical Journal, 351, Article No. 89. https://doi.org/10.1086/168447
[14]
Hoyle, F. and Wickramasinghe, N.C. (1993) Our Place in the Cosmos: The Unfinished Revolution. J.M. Dent Ltd.
[15]
Steele, E.J., Al-Mufti, S., Augustyn, K.A., Chandrajith, R., Coghlan, J.P., Coulson, S.G., et al. (2019) Reply to Commentary by R Duggleby (2019). Progress in Biophysics and Molecular Biology, 141, 74-78. https://doi.org/10.1016/j.pbiomolbio.2018.11.002
[16]
Capaccione, F., Coradini, A., Filacchione, G., et al. (2015) The Organic-Rich Surface of Comet 67P/Churyumov-Gerasimenko as Seen by VIRTIS/Rosetta. Science, 347, aaa0628. https://doi.org/10.1126/science.aaa0628
[17]
Bieler, A., Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J., Bochsler, P., et al. (2015) Abundant Molecular Oxygen in the Coma of Comet 67p/Churyumov-Gerasimenko. Nature, 526, 678-681. https://doi.org/10.1038/nature15707
[18]
Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J., Bieler, A., Bochsler, P., et al. (2016) Prebiotic Chemicals—Amino Acid and Phosphorus—in the Coma of Comet 67p/Churyumov-Gerasimenko. Science Advances, 2, e1600285. https://doi.org/10.1126/sciadv.1600285
[19]
Madhusudhan, N., Constantinou, S., Holmberg, M., Sarkar, S., Piette, A.A.A. and Moses, J.I. (2025) New Constraints on DMS and DMDS in the Atmosphere of K2-18 B from JWST Miri. The Astrophysical Journal Letters, 983, L40. https://doi.org/10.3847/2041-8213/adc1c8
[20]
Allen, D.A. and Wickramasinghe, D.T. (1981) Diffuse Interstellar Absorption Bands between 2.9 and 4.0 μm. Nature, 294, 239-240. https://doi.org/10.1038/294239a0
[21]
Wickramasinghe, N.C., Wallis, J., Wallis, D.H. and Samaranayake, A. (2013) Fossil Diatoms in a New Carbonaceous Meteorite. Journal of Cosmology, 21, 1-14.
[22]
Hoover, R., Frontasyeva, M., Pavlov, S., et al. (2021) ENAA and SEM Investigations of Carbonaceous Meteorites. Academia Journal of Scientific Research, 9, 96-104. https://www.researchgate.net/publication/366955039_ENAA_and_SEM_investigations_of_Carbonaceous_Meteorites
[23]
Pflug, H.D. and Heinz, B. (1997) Analysis of Fossil Organic Nanostructures: Terrestrial and Extraterrestrial. SPIE Proceedings, 11 July 1997. https://doi.org/10.1117/12.278814
[24]
Hoover, R.B. (2005) Microfossils, Biominerals, and Chemical Biomarkers in Meteorites. In: Hoover, R.B., Rozanov, A.Y. and Paepe, Eds., Perspectives in Astrobiology, RR IOS Press, 43-65.
[25]
Hoover, R.B. (2011) Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa and Enceladus. Journal of Cosmology, 16, 7070-7111.
[26]
Rozanov, A.Y. and Hoover, R.B. (2013) Acritarchs in Carbonaceous Meteorites and Terrestrial Rocks Instruments, Methods, and Missions for Astrobiology XVI. Proceedings of SPIE, Vol. 8855, Article ID: 886507. https://spie.org/Publications/Proceedings/Volume/7097
[27]
Hoover, R.B. (2007) Ratios of Biogenic Elements for Distinguishing Recent from Fossil Microorganisms. SPIE Proceedings, Volume 6694, 66940D. https://doi.org/10.1117/12.742285
[28]
Genge, M.J., Almeida, N., Van Ginneken, M., et al. (2024) Meteoritics & Planetary Science Rapid Colonization of a Space-Returned Ryugu Sample by Terrestrial Micro-Organisms. Meteoritics and Planetary Science, 60, 64-73. https://doi.org/10.1111/maps.14288
[29]
Tachibana, S., et al. (2022) Pebbles and Sans on Asteroid (162173) Ryugu: On-Site Observation and Returned Particles from Two Landing Sites. Science, 375, 1011-1016. https://doi.org/10.1126/science.abj8624
[30]
Woese, C.R., Kandler, O. and Wheelis, M.L. (1990) Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 87, 4576-4579. https://doi.org/10.1073/pnas.87.12.4576
[31]
Wickramasinghe, N.C. (2012) DNA Sequencing and Predictions of the Cosmic Theory of Life. Astrophysics and Space Science, 343, 1-5. https://doi.org/10.1007/s10509-012-1227-y
[32]
Wickramasinghe, C. (2014) The Search for Our Cosmic Ancestry. World Scientific. https://doi.org/10.1142/9245
[33]
Wickramasinghe, N.C., Steele, E.J., Wallis, D.H., et al. (2021) Footprints of Past Pandemics in the Human Genome. Virology: Current Research, 5, Article No. 4. https://www.hilarispublisher.com/open-access/footprints-of-past-pandemics-in-the-human-genome.pdf
[34]
Wickramasinghe, N.C. and Steele, E.J. (2015) Dangers of Adhering to an Obsolete Paradigm: Could Zika Virus Lead to a Reversal of Human Evolution? Journal of Astrobiology & Outreach, 4, Article ID: 1000147. https://doi.org/10.4172/2332-2519.1000147