全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于计量经济学模型下的公路运输量预测及分析研究
Prediction and Analysis of Highway Transportation Volume Based on Econometric Model

DOI: 10.12677/sa.2025.146152, PP. 116-126

Keywords: 公路运输量,时间序列模型,ARIMA模型
Highway Transportation Volume
, Econometric Model, ARIMA Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

公路运输以其高效便捷特性,成为区域及国际交流的关键纽带。鉴于其重要性,本文聚焦于国内公路运输量的精准预测与影响因素分析。利用2022年2月至2024年11月数据,借助Eviews10.0软件,构建ARIMA预测模型。通过数据平稳性检验与差分处理,确保模型数据平稳。随后,多模型比选确定最优解,并验证其可靠性。最终,采用静态预测法,短期预测2025年3月至2025年5月公路运输量,预测结果为运输规划与政策制定提供有益参考,并助力资源优化配置。
Road transport, with its efficient and convenient characteristics, has become a key link for regional and international exchanges. In view of its importance, this paper focuses on the accurate prediction of domestic highway transportation volume and the analysis of influencing factors. Using the data from February 2022 to November 2024, the ARIMA prediction model was constructed with the help of Eviews10.0 software. Through data stationarity tests and difference processing, the stability of model data is ensured. Then, the optimal solution is determined by multi-model comparison and its reliability is verified. Finally, the static forecasting method is used to forecast the highway transportation volume from December 2024 to February 2025 in the short term, and the prediction results provide good scientific basis for transportation planning and policy formulation, and helping to optimize the allocation of resources.

References

[1]  焦维. 基于时间序列模型的我国运输量分析及预测[D]: [硕士学位论文]. 贵阳: 贵州财经大学, 2021.
[2]  雷鸣涛. 基于灰色系统理论的公路运输量预测[J]. 公路交通科技, 2017(4): 156-158.
[3]  尧姚, 陶静, 李毅. 基于ARIMA-BP组合模型的民航旅客运输量预测[J]. 计算机技术与发展, 2022, 25(12): 147-151.
[4]  刘博, 赵璐, 单曲轶. 基于时间序列数据挖掘的我国民航运输量预测分析[J]. 中国民航飞行学院学报, 2022, 30(5): 46-50.
[5]  陈镱尹. 基于向量自回归模型的我国运输量预测研究[D]: [硕士学位论文]. 贵阳: 贵州财经大学, 2022.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133