全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

综合物探方法在金属矿勘查中的应用
The Application of Integrated Geophysical Methods in Metal Ore Exploration

DOI: 10.12677/ag.2025.156086, PP. 903-917

Keywords: 激发极化法,电阻率法,航空电磁法,金属矿产勘查
Induced Polarization (IP) Method
, Resistivity Method, Airborne Electromagnetic (AEM) Method, Metal Ore Exploration

Full-Text   Cite this paper   Add to My Lib

Abstract:

Simuku (EL2379)与Nakru (EL1043)项目区位于巴布亚新几内亚新不列颠岛西部地区,是世界最有前景的侵入相关矿床地区之一。随着研究区找矿工作逐渐深入,急需查明该地区的深部结构为深部找矿提供指引研究区域以其丰富的金、铜资源而闻名,地质环境复杂,具有斑岩、浅成低温和矽卡岩矿床特征。研究采用了激发极化法(IP)与电阻率测量结合的方法,结合历史航空电磁法(AEM)数据,对矿区进行了详细的地质调查和数据分析。研究结果表明,Simuku矿区的L03-04-05测线电阻率和激发极化响应显著,L04测线的激电异常集中在171050E,可能存在黄铁矿蚀变,具有较高的找矿前景。Nakru矿区的22200E-22260E,9339000N-9339400N处也存在充电率异常,值得进一步调查。综合物探方法在识别矿化带、验证历史异常和确定钻探目标方面表现出色,为金属矿勘查提供了有效的技术支持。
The Simuku (EL2379) and Nakru (EL1043) project areas are situated in the western region of New Britain Island, Papua New Guinea, which is recognized as one of the world’s most prospective regions for intrusion-related mineral deposits. With the ongoing advancement of mineral exploration in the study area, there is an urgent need to delineate the deep-seated structures to guide further exploration efforts. The study area is renowned for its abundant gold and copper resources, characterized by a complex geological setting that includes porphyry, epithermal, and skarn-type mineralization. The study utilized a combination of induced polarization (IP) and resistivity surveys, integrated with historical airborne electromagnetic (AEM) data, to conduct comprehensive geological investigations and data interpretation. The results reveal that the L03-04-05 survey line in the Simuku area exhibits significant resistivity anomalies and strong IP responses. Specifically, the IP anomaly along the L04 line is concentrated at 171050E, indicating potential pyrite alteration zones and highlighting high exploration potential. In the Nakru area, a distinct chargeability anomaly was identified within the coordinates 22200E-22260E and 9339000N-9339400N, warranting further detailed investigation. The integrated geophysical approach has proven highly effective in identifying mineralized zones, validating historical geophysical anomalies, and defining precise drilling targets. This methodology provides robust technical support for metal ore exploration in the region.

References

[1]  Cooke, D.R., Hollings, P. and Walshe, J.L. (2005) Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100, 801-818.
https://doi.org/10.2113/gsecongeo.100.5.801

[2]  Sillitoe, R.H. (2010) Porphyry Copper Systems. Economic Geology, 105, 3-41.
https://doi.org/10.2113/gsecongeo.105.1.3

[3]  Richards, J.P. (2013) Giant Ore Deposits Formed by Optimal Alignments and Combinations of Geological Processes. Nature Geoscience, 6, 911-916.
https://doi.org/10.1038/ngeo1920

[4]  Rogerson, R., Williamson, A. and Francis, G. (1986) Recent Advances in the Knowledge of Geology, Energy Resources and Metallogenesis of Papua New Guinea since 1981.
https://gsmpubl.wordpress.com/wp-content/uploads/2014/09/bgsm1986b02.pdf
[5]  Jowitt, S.M., Mudd, G.M. and Weng, Z. (2013) Hidden Mineral Deposits in Cu-Dominated Porphyry-Skarn Systems: How Resource Reporting Can Occlude Important Mineralization Types within MINING Camps. Economic Geology, 108, 1185-1193.
https://doi.org/10.2113/econgeo.108.5.1185

[6]  Sumner, J.S. (2012) Principles of Induced Polarization for Geophysical Exploration. Elsevier.
[7]  Johnson, I.M. (1984) Spectral Induced Polarization Parameters as Determined through Time‐domain Measurements. Geophysics, 49, 1993-2003.
https://doi.org/10.1190/1.1441610

[8]  Olayinka, A. and Yaramanci, U. (1999) Choice of the Best Model in 2-D Geoelectrical Imaging: Case Study from a Waste Dump Site. European Journal of Environmental and Engineering Geophysics, 3, 221-244.
[9]  Olayinka, A.I. and Yaramanci, U. (2000) Use of Block Inversion in the 2-D Interpretation of Apparent Resistivity Data and Its Comparison with Smooth Inversion. Journal of Applied Geophysics, 45, 63-81.
https://doi.org/10.1016/s0926-9851(00)00019-7

[10]  Dahlin, T. and Zhou, B. (2004) A Numerical Comparison of 2D Resistivity Imaging with 10 Electrode Arrays. Geophysical Prospecting, 52, 379-398.
https://doi.org/10.1111/j.1365-2478.2004.00423.x

[11]  Parasnis, D.S. (2014) Mining Geophysics. Elsevier.
[12]  Binley, A. and Kemna, A. (n.d.) DC Resistivity and Induced Polarization Methods. In: Rubin, Y. and Hubbard, S.S., Eds., Water Science and Technology Library, Springer, 129-156.
https://doi.org/10.1007/1-4020-3102-5_5

[13]  Embeng, S.B.N., Meying, A., Ndougsa-Mbarga, T., Moreira, C.A. and Amougou, O.U.O. (2022) Delineation and Quasi-3d Modeling of Gold Mineralization Using Self-Potential (SP), Electrical Resistivity Tomography (ERT), and Induced Polarization (IP) Methods in Yassa Village, Adamawa, Cameroon: A Case Study. Pure and Applied Geophysics, 179, 795-815.
https://doi.org/10.1007/s00024-022-02951-y

[14]  Horo, D., Pal, S.K., Singh, S. and Srivastava, S. (2020) Combined Self-Potential, Electrical Resistivity Tomography and Induced Polarisation for Mapping of Gold Prospective Zones over a Part of Babaikundi-Birgaon Axis, North Singhbhum Mobile Belt, India. Exploration Geophysics, 51, 507-522.
https://doi.org/10.1080/08123985.2020.1722026

[15]  Olsson, P., Dahlin, T., Fiandaca, G. and Auken, E. (2015) Measuring Time-Domain Spectral Induced Polarization in the On-Time: Decreasing Acquisition Time and Increasing Signal-to-Noise Ratio. Journal of Applied Geophysics, 123, 316-321.
https://doi.org/10.1016/j.jappgeo.2015.08.009

[16]  Heritiana A., R., Riva, R., Ralay, R. and Boni, R. (2019) Evaluation of Flake Graphite Ore Using Self-Potential (SP), Electrical Resistivity Tomography (ERT) and Induced Polarization (IP) Methods in East Coast of Madagascar. Journal of Applied Geophysics, 169, 134-141.
https://doi.org/10.1016/j.jappgeo.2019.07.001

[17]  Griffiths, D.H., Turnbull, J. and Olayinka, A.I. (1990) Two-Dimensional Resistivity Mapping with a Computer-Controlled Array. First Break, 8, 121-129.
https://doi.org/10.3997/1365-2397.1990008

[18]  Griffiths, D.H. and Barker, R.D. (1993) Two-Dimensional Resistivity Imaging and Modelling in Areas of Complex Geology. Journal of Applied Geophysics, 29, 211-226.
https://doi.org/10.1016/0926-9851(93)90005-j

[19]  Dahlin, T. and Loke, M.H. (1998) Resolution of 2D Wenner Resistivity Imaging as Assessed by Numerical Modelling. Journal of Applied Geophysics, 38, 237-249.
https://doi.org/10.1016/s0926-9851(97)00030-x

[20]  Madsen, J.A. and Lindley, I.D. (1994) Large‐Scale Structures on Gazelle Peninsula, New Britain: Implications for the Evolution of the New Britain Arc. Australian Journal of Earth Sciences, 41, 561-569.
https://doi.org/10.1080/08120099408728166

[21]  Martín-Crespo, T., Gómez-Ortiz, D., Martín-Velázquez, S., Martínez-Pagán, P., De Ignacio, C., Lillo, J., et al. (2018) Geoenvironmental Characterization of Unstable Abandoned Mine Tailings Combining Geophysical and Geochemical Methods (Cartagena-La Union District, Spain). Engineering Geology, 232, 135-146.
https://doi.org/10.1016/j.enggeo.2017.11.018

[22]  Baroň, I., Supper, R., Winkler, E., Motschka, K., Ahl, A., Čarman, M., et al. (2013) Airborne Geophysical Survey of the Catastrophic Landslide at Stože, Log Pod Mangrtom, as a Test of an Innovative Approach for Landslide Mapping in Steep Alpine Terrains. Natural Hazards and Earth System Sciences, 13, 2543-2550.
https://doi.org/10.5194/nhess-13-2543-2013

[23]  Siemon, B., Christiansen, A.V. and Auken, E. (2009) A Review of Helicopter‐Borne Electromagnetic Methods for Groundwater Exploration. Near Surface Geophysics, 7, 629-646.
https://doi.org/10.3997/1873-0604.2009043

[24]  Auken, E., Boesen, T. and Christiansen, A.V. (2017) A Review of Airborne Electromagnetic Methods with Focus on Geotechnical and Hydrological Applications from 2007 to 2017. In: Advances in Geophysics, Elsevier, 47-93.
https://doi.org/10.1016/bs.agph.2017.10.002

[25]  Reninger, P.-A., Martelet, G., Deparis, J., Perrin, J. and Chen, Y. (2011) Singular Value Decomposition as a Denoising Tool for Airborne Time Domain Electromagnetic Data. Journal of Applied Geophysics, 75, 264-276.
https://doi.org/10.1016/j.jappgeo.2011.06.034

[26]  Dumont, M., Peltier, A., Roblin, E., Reninger, P., Barde-Cabusson, S., Finizola, A., et al. (2019) Imagery of Internal Structure and Destabilization Features of Active Volcano by 3D High Resolution Airborne Electromagnetism. Scientific Reports, 9, Article No. 18280.
https://doi.org/10.1038/s41598-019-54415-4

[27]  Dumont, M., Reninger, P.A., Pryet, A., Martelet, G., Aunay, B. and Join, J.L. (2018) Agglomerative Hierarchical Clustering of Airborne Electromagnetic Data for Multi-Scale Geological Studies. Journal of Applied Geophysics, 157, 1-9.
https://doi.org/10.1016/j.jappgeo.2018.06.020

[28]  Roach, I.C., Jaireth, S. and Costelloe, M.T. (2014) Applying Regional Airborne Electromagnetic (AEM) Surveying to Understand the Architecture of Sandstone-Hosted Uranium Mineral Systems in the Callabonna Sub-Basin, Lake Frome Region, South Australia. Australian Journal of Earth Sciences, 61, 659-688.
https://doi.org/10.1080/08120099.2014.908951

[29]  Smith, R., Fountain, D. and Allard, M. (2003) The MEGATEM Fixed-Wing Transient EM System Applied to Mineral Exploration: A Discovery Case History. First Break, 21, 391-399.
https://doi.org/10.3997/1365-2397.21.7.25570

[30]  Mikucki, J.A., Auken, E., Tulaczyk, S., Virginia, R.A., Schamper, C., Sørensen, K.I., et al. (2015) Deep Groundwater and Potential Subsurface Habitats beneath an Antarctic Dry Valley. Nature Communications, 6, Article No. 6831.
https://doi.org/10.1038/ncomms7831

[31]  Okazaki, K., Mogi, T., Utsugi, M., Ito, Y., Kunishima, H., Yamazaki, T., et al. (2011) Airborne Electromagnetic and Magnetic Surveys for Long Tunnel Construction Design. Physics and Chemistry of the Earth, Parts A/B/C, 36, 1237-1246.
https://doi.org/10.1016/j.pce.2011.05.008

[32]  Pfaffhuber, A.A., Persson, L., Lysdahl, A.O.K., Kåsin, K., Anschütz, H., Bastani, M., et al. (2017) Integrated Scanning for Quick Clay with AEM and Ground-Based Investigations. First Break, 35, 73-79.
https://doi.org/10.3997/1365-2397.35.8.89808

[33]  Jakesˇ, P. and Gill, J. (1970) Rare Earth Elements and the Island Arc Tholeiitic Series. Earth and Planetary Science Letters, 9, 17-28.
https://doi.org/10.1016/0012-821x(70)90018-x

[34]  Woodhead, J.D., Eggins, S.M. and Johnson, R.W. (1998) Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. Journal of Petrology, 39, 1641-1668.
https://doi.org/10.1093/petroj/39.9.1641

[35]  Taylor, B. (1979) Bismarck Sea: Evolution of a Back-Arc Basin. Geology, 7, 171-174.
https://doi.org/10.1130/0091-7613(1979)7<171:bseoab>2.0.co;2

[36]  Findlay, R.H. (2003) Collision Tectonics of Northern Papua New Guinea: Key Field Relationships Demand a New Model. In: Hillis, R.R. and Müller, R.D., Eds., Evolution and Dynamics of the Australian Plate, Geological Society of America, Geological Society of America, 291-306.
https://doi.org/10.1130/0-8137-2372-8.291

[37]  Wallace, L.M., Stevens, C., Silver, E., McCaffrey, R., Loratung, W., Hasiata, S., et al. (2004) GPS and Seismological Constraints on Active Tectonics and Arc‐Continent Collision in Papua New Guinea: Implications for Mechanics of Microplate Rotations in a Plate Boundary Zone. Journal of Geophysical Research: Solid Earth, 109, B05404.
https://doi.org/10.1029/2003jb002481

[38]  Audra, P., Lauritzen, S. and Rochette, P. (2011) Speleogenesis in the Hyperkarst of the Nakanai Mountains (New Britain, Papua New Guinea). Evolution Model of a Juvenile System (Muruk Cave) Inferred from U/Th and Paleomagnetic Dating. Speleogenesis and Evolution of Karst Aquifers, 10, 25-30.
[39]  Christopher, P. (2002) Technical Report on the Mt Nakru, Simuku, Sinivit, Normanby and Feni Properties, Papua New Guinea. In Technical Report Prepared for New Guinea Gold Corporation.
[40]  Lindley, I.D. (2006) Extensional and Vertical Tectonics in the New Guinea Islands: Implications for Island Arc Evolution. Annals of Geophysics, 49, 403-426.
[41]  Titley, S.R. (1978) Geologic History, Hypogene Features, and Processes of Secondary Sulfide Enrichment at the Plesyumi Copper Prospect, New Britain, Papua New Guinea. Economic Geology, 73, 768-784.
https://doi.org/10.2113/gsecongeo.73.5.768

[42]  Hine, R. and Mason, D.R. (1978) Intrusive Rocks Associated with Porphyry Copper Mineralization, New Britain, Papua New Guinea. Economic Geology, 73, 749-760.
https://doi.org/10.2113/gsecongeo.73.5.749

[43]  Hutchinson, D. and Swiridiuk, P. (2006) Simuku Property: West New Britain Province, Papua New Guinea. In Technical Report to New Guinea Gold Corporation.
[44]  Holm, R.J., Spandler, C. and Richards, S.W. (2013) Melanesian Arc Far-Field Response to Collision of the Ontong Java Plateau: Geochronology and Petrogenesis of the Simuku Igneous Complex, New Britain, Papua New Guinea. Tectonophysics, 603, 189-212.
https://doi.org/10.1016/j.tecto.2013.05.029

[45]  Holm, R.J., Tapster, S., Jelsma, H.A., Rosenbaum, G. and Mark, D.F. (2019) Tectonic Evolution and Copper-Gold Metallogenesis of the Papua New Guinea and Solomon Islands Region. Ore Geology Reviews, 104, 208-226.
https://doi.org/10.1016/j.oregeorev.2018.11.007

[46]  Garwin, S., Hall, R. and Watanabe, Y. (2005) Tectonic Setting, Geology, and Gold and Copper Mineralization in Cenozoic Magmatic Arcs of Southeast Asia and the West Pacific. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P., Eds., One Hundredth Anniversary Volume, Society of Economic Geologists, Society of Economic Geologists, 27-70.
https://doi.org/10.5382/av100.27

[47]  Singer, D.A., Berger, V.I. and Moring, B.C. (2008) Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models, 2008. US Geological Survey.
https://doi.org/10.3133/ofr20081155

[48]  宋学信, 信迪, 王天刚, 等. 巴布亚新几内亚铜金矿床成矿时代及成矿控制因素[J]. 地质通报, 2014, 33(2): 283-298.
[49]  李文光, 傅朝义, 姚仲友, 等. 巴布亚新几内亚铜金矿床大地构造背景、成因类型与成矿特征[J]. 地质通报, 2014, 33(2): 270-282.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133