全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于欧拉反褶积的基底断裂研究
Research on Basement Fault Using Euler Deconvolution

DOI: 10.12677/ag.2025.156085, PP. 889-902

Keywords: 欧拉反褶积,小波多尺度分析,噪声抑制,断裂划分
Euler Deconvolution
, Wavelet Multi-Scale Analysis, Noise Suppression, Deep Structural Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

欧拉反褶积法作为无需先验信息的位场自动反演方法,因其计算高效、适用性广等特点,被广泛应用于场源体定位与边界识别。然而,噪声干扰引起的虚假解(如高频噪声使反演结果偏移真实场源)及复杂场源耦合效应(如多尺度异常叠加降低反演精度)等问题,严重制约其在深部构造精细解析中的应用。针对上述不足,文章提出“小波多尺度分析 + 欧拉反褶积联合反演”框架,通过理论建模、对比实验与实例应用验证其技术优势,最终在松辽盆地北部划分出8条主要断裂。为复杂地质区域断裂划分提供新的技术路径。
The Euler deconvolution method, as a prior-information-free automatic potential field inversion technique, has been widely applied in source body positioning and boundary identification due to its computational efficiency and broad applicability. However, issues such as spurious solutions caused by noise interference (e.g., high-frequency noise deflecting inversion results from true field sources) and complex source coupling effects (e.g., multi-scale anomaly superposition reducing inversion accuracy) significantly limit its application in detailed deep structural analysis. To address these shortcomings, this paper proposes a “wavelet multiscale analysis + Euler deconvolution joint inversion” framework, verifying its technical advantages through theoretical modeling, comparative experiments, and practical applications, and ultimately delineating 8 major faults in the northern Songliao Basin. This provides a novel technical approach for fault mapping in complex geological regions.

References

[1]  邹博伦. 重力数据处理及其在吉日根林场的应用[D]: [硕士学位论文]. 长春: 吉林大学, 2019.
[2]  代宏睿. 川西藏东地区重磁处理解释与地壳结构研究[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2021.
[3]  陈茂山, 宋强功, 王成祥. 地球物理勘探一百年[J]. 石油知识, 2023(2): 22-25.
[4]  马健, 王晓光, 刘明明, 吴振, 郭恒, 张龙. 综合地球物理方法在中深层地热资源勘查中的应用综述[J]. 矿产勘查, 2024, 15(4): 623-633.
[5]  Thompson, D.T. (1982) Euldph: A New Technique for Making Computer-Assisted Depth Estimates from Magnetic Data. Geophysics, 47, 31-37.
[6]  李银飞. 利用欧拉反褶积划分虎林盆地构造单元[D]: [硕士学位论文]. 长春: 吉林大学, 2019.
[7]  Ma, G.Q., Yong, X.Y. and Li, L.L. (2020) Three-Dimensional Gravitational and Magnetic-Data Acquisition and Analysis via a Joint-Gradient Euler-Deconvolution Method. Applied Geophysics, 17, 297-305.
[8]  金文博. 起伏地形下的重磁异常欧拉反褶积方法研究[D]: [硕士学位论文]. 长春: 吉林大学, 2024.
[9]  Morlet, J., Arens, G., et al. (1982) Wave Propagation and Sampling Theory; Part II, Sampling Theory and Complex waves. Geophysics, 47, 222-236.
[10]  Lelievre, P.G. and Oldenburg, D.W. (2006) Magnetic forward Modeling and Inversion for High Susceptibility. Geophysical Journal International, 166, 76-90.
[11]  Kaftana, I., Salk, M. and Senol, Y. (2011) Evaluation of Gravity Data by Using Artificial Neural Networks Case Study: Seferihisar Geothermal Area (Western Turkey). Journal of Applied Geophysics, 75, 711-718.
[12]  高德章, 侯遵泽, 唐建. 东海及邻区重力异常多尺度分解[J]. 地球物理学报, 2000, 43(6): 842-849.
[13]  宁津生, 王伟, 汪海洪, 罗佳. 应用小波变换确定琉球俯冲带的深部特征[J]. 武汉大学学报(信息科学版), 2010, 35(10): 1135-1137.
[14]  卢海. 基于小波多分辨技术的重力场参数相关系数成像研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2012.
[15]  蒋勇平. 小波多尺度分析在重力场分离中的研究与应用[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2018.
[16]  兰天维. 地震随机噪声压制中多算法融合的深度学习方法研究[D]: [硕士学位论文]. 长春: 吉林大学, 2024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133