全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

浆液性卵巢癌中tiRNA-His-GTG-001的表达和功能研究
Expression and Functional Study of tiRNA-His-GTG-001 in Serous Ovarian Cancer

DOI: 10.12677/acm.2025.1561900, PP. 1646-1654

Keywords: 浆液性卵巢癌,tiRNA-His-GTG-001,临床病理意义,增殖和生长
Serous Ovarian Cancer
, tiRNA-His-GTG-001, Clinicopathological Significance, Proliferation and Growth

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:tRNA衍生小RNA (tsRNAs)是一种新型的非编码RNA。本研究旨在探讨tiRNA-His-GTG-001在卵巢浆液性癌(SOC)中的表达、临床病理意义和功能。方法:通过tsRNA芯片检测SOC和邻近正常组织中差异性表达的tsRNAs,并通过qRT-PCR验证tiRNA-His-GTG-001在63例SOC中的表达。细胞克隆形成实验和CCK-8法检测细胞增殖与生长;Transwell实验检测细胞迁移能力。结果:tRF-tiRNA-His-GTG-001在63例SOC中的表达水平上调;tiRNA-His-GTG-001表达与肿瘤直径和病理分级密切相关。过表达tiRNA-His-GTG-001后,细胞增殖活性升高、克隆数目增多;降低tiRNA-His-GTG-001表达后,细胞增殖活性下降、克隆数目减少。在Transwell迁移实验中,tiRNA-His-GTG-001表达与细胞迁移无关。结论:在SOC中tRF-tiRNA-His-GTG-001表达水平上调,是一种新的促癌基因。tRF-tiRNA-His-GTG-001促进卵巢癌细胞的增殖和生长,而与迁移无关。本研究为SOC增殖生长提供了新的标志物,并可能为SOC的诊治提供了潜在的策略。
Objective: tRNA-derived small RNAs (tsRNAs) is a novel non-coding RNA. This study is to investigate the expression, clinicopathological significance and function of tiRNA-His-GTG-001 in serous ovarian cancer (SOC). Methods: The differentially expressed tsRNAs in SOC and adjacent normal tissues were detected by tsRNA chip, and the expression of tiRNA-His-GTG-001 in SOC was verified by qRT-PCR in 63 cases. Cell cloning formation assay and CCK-8 assay were used to detect cell proliferation and growth. Transwell assay was used to detect cell migration ability. Results: The expression of tiRNA-His-GTG-001 was up-regulated in 63 SOC. The expression of tiRNA-His-GTG-001 was closely related to tumor diameter and pathological grade. After overexpression of tiRNA-His-GTG-001, cell proliferation activity and clone number increased. After the expression of tiRNA-His-GTG-001 was decreased, the cell proliferation activity and clone number decreased. In Transwell migration assay, tiRNA-His-GTG-001 expression was not associated with cell migration. Conclusions: tiRNA-His-GTG-001 is up-regulated in SOC, suggesting that tiRNA-His-GTG-001 is a novel oncogene. tiRNA-His-GTG-001 promoted ovarian cancer cell proliferation and growth, but not migration. This study provides a new marker for the proliferation and growth of SOC, and may provide a potential strategy for the diagnosis and treatment of SOC.

References

[1]  Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48.
https://doi.org/10.3322/caac.21763
[2]  Tadić, V., Zhang, W. and Brozovic, A. (2024) The High-Grade Serous Ovarian Cancer Metastasis and Chemoresistance in 3D Models. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1879, Article 189052.
https://doi.org/10.1016/j.bbcan.2023.189052
[3]  Zhu, L., Ge, J., Li, T., Shen, Y. and Guo, J. (2019) tRNA-Derived Fragments and tRNA Halves: The New Players in Cancers. Cancer Letters, 452, 31-37.
https://doi.org/10.1016/j.canlet.2019.03.012
[4]  Pekarsky, Y., Balatti, V. and Croce, C.M. (2023) tRNA-Derived Fragments (tRFs) in Cancer. Journal of Cell Communication and Signaling, 17, 47-54.
https://doi.org/10.1007/s12079-022-00690-2
[5]  Tyczewska, A. and Grzywacz, K. (2023) tRNA-Derived Fragments as New Players in Regulatory Processes in Yeast. Yeast, 40, 283-289.
https://doi.org/10.1002/yea.3829
[6]  Fu, M., Gu, J., Wang, M., Zhang, J., Chen, Y., Jiang, P., et al. (2023) Emerging Roles of tRNA-Derived Fragments in Cancer. Molecular Cancer, 22, Article No. 30.
https://doi.org/10.1186/s12943-023-01739-5
[7]  Krishna, S., Raghavan, S., DasGupta, R. and Palakodeti, D. (2021) tRNA-Derived Fragments (tRNA): Establishing Their Turf in Post-Transcriptional Gene Regulation. Cellular and Molecular Life Sciences, 78, 2607-2619.
https://doi.org/10.1007/s00018-020-03720-7
[8]  Shaukat, A., Kaliatsi, E.G., Stamatopoulou, V. and Stathopoulos, C. (2021) Mitochondrial tRNA-Derived Fragments and Their Contribution to Gene Expression Regulation. Frontiers in Physiology, 12, Article 729452.
https://doi.org/10.3389/fphys.2021.729452
[9]  Lu, J., Zhu, P., Zhang, X., Zeng, L., Xu, B. and Zhou, P. (2024) tRNA‐Derived Fragments: Unveiling New Roles and Molecular Mechanisms in Cancer Progression. International Journal of Cancer, 155, 1347-1360.
https://doi.org/10.1002/ijc.35041
[10]  Li, Y., Yu, Z., Jiang, W., Lyu, X., Guo, A., Sun, X., et al. (2024) tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators. Biomolecules, 14, Article 1340.
https://doi.org/10.3390/biom14101340
[11]  Dou, S., Wang, Y. and Lu, J. (2019) Metazoan tsRNAs: Biogenesis, Evolution and Regulatory Functions. Non-Coding RNA, 5, Article 18.
https://doi.org/10.3390/ncrna5010018
[12]  Xu, D., Qiao, D., Lei, Y., Zhang, C., Bu, Y. and Zhang, Y. (2022) Transfer RNA-Derived Small RNAs (tsRNAs): Versatile Regulators in Cancer. Cancer Letters, 546, Article 215842.
https://doi.org/10.1016/j.canlet.2022.215842
[13]  Li, J., Zhu, L., Cheng, J. and Peng, Y. (2021) Transfer RNA-Derived Small RNA: A Rising Star in Oncology. Seminars in Cancer Biology, 75, 29-37.
https://doi.org/10.1016/j.semcancer.2021.05.024
[14]  Wu, Y., Yang, X., Jiang, G., Zhang, H., Ge, L., Chen, F., et al. (2021) 5’-tRF-GLYGCC: A tRNA-Derived Small RNA as a Novel Biomarker for Colorectal Cancer Diagnosis. Genome Medicine, 13, Article No. 20.
https://doi.org/10.1186/s13073-021-00833-x
[15]  Li, K., Lin, Y., Luo, Y., Xiong, X., Wang, L., Durante, K., et al. (2022) A Signature of Saliva-Derived Exosomal Small RNAs as Predicting Biomarker for Esophageal Carcinoma: A Multicenter Prospective Study. Molecular Cancer, 21, Article No. 21.
https://doi.org/10.1186/s12943-022-01499-8
[16]  Wang, J., Ma, G., Li, M., Han, X., Xu, J., Liang, M., et al. (2020) Plasma tRNA Fragments Derived from 5’ Ends as Novel Diagnostic Biomarkers for Early-Stage Breast Cancer. Molecular Therapy Nucleic Acids, 21, 954-964.
[17]  Zhang, M., Li, F., Wang, J., He, W., Li, Y., Li, H., et al. (2019) tRNA-Derived Fragment tRF-03357 Promotes Cell Proliferation, Migration and Invasion in High-Grade Serous Ovarian Cancer. OncoTargets and Therapy, 12, 6371-6383.
https://doi.org/10.2147/ott.s206861
[18]  Cao, K., Yan, T., Zhang, J., Chan, T., Li, J., Li, C., et al. (2022) A tRNA-Derived Fragment from Chinese Yew Suppresses Ovarian Cancer Growth via Targeting TRPA1. Molecular Therapy-Nucleic Acids, 27, 718-732.
https://doi.org/10.1016/j.omtn.2021.12.037
[19]  Chen, B., Liu, S., Wang, H., Li, G., Lu, X. and Xu, H. (2021) Differential Expression Profiles and Function Prediction of Transfer RNA‐Derived Fragments in High‐Grade Serous Ovarian Cancer. BioMed Research International, 2021, Article 5594081.
https://doi.org/10.1155/2021/5594081
[20]  Panoutsopoulou, K., Dreyer, T., Dorn, J., Obermayr, E., Mahner, S., Gorp, T.V., et al. (2021) tRNAGlyGCC-Derived Internal Fragment (i-tRF-GlyGCC) in Ovarian Cancer Treatment Outcome and Progression. Cancers, 14, Article 24.
https://doi.org/10.3390/cancers14010024
[21]  Zhou, K., Diebel, K.W., Holy, J., Skildum, A., Odean, E., Hicks, D.A., et al. (2017) A tRNA Fragment, tRF5-Glu, Regulates BCAR3 Expression and Proliferation in Ovarian Cancer Cells. Oncotarget, 8, 95377-95391.
https://doi.org/10.18632/oncotarget.20709

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133