|
表面张力驱动对流对液滴散热影响的机理研究
|
Abstract:
为了揭示表面张力驱动对流对液滴散热影响的作用机理,本文采取数值模拟方法对热毛细对流(表面张力驱动对流)下的液滴散热进行研究。建立了以硅油作为工质的二维液滴模型,考虑在常重力和微重力两种情况下,对于液滴内部流动与传热特性的影响。结果表明,温差越大液滴内部流速越快,温度梯度变化越剧烈,其热毛细对流的换热效果越明显;热毛细对流使得液滴背部流速较大区域扩大,并且其内部的低速流动区域减少甚至消失,热毛细效应增强液滴换热效果得到明显提升;重力水平的增大,液滴的整体散热性能也得到增强。
In order to reveal the mechanism of the effect of surface tension driven convection on droplet heat dissipation, this paper adopts numerical simulation methods to study droplet heat dissipation under thermocapillary convection (surface tension driven convection). A two-dimensional droplet model using silicone oil as the working fluid was established, considering the effects of constant gravity and microgravity on the internal flow and heat transfer characteristics of the droplet. The results indicate that the larger the temperature difference, the faster the internal flow velocity of the droplet, and the temperature gradient changes. The more intense the heat, the more obvious the heat transfer effect of capillary convection; The thermocapillary convection expands the area with high velocity on the back of the droplet, and reduces or even disappears the low-speed flow area inside. The thermocapillary effect enhances the heat transfer efficiency of the droplet and is significantly improved; The increase in gravity level enhances the overall heat dissipation performance of droplets.
[1] | 周小明, 姜燕妮, 李韫良. 激光光热效应调控热毛细对流的数值探究[C]//中国力学学会流体力学专业委员会. 第十一届全国流体力学学术会议论文摘要集. 2020: 186. |
[2] | 陈上通, 段俐, 康琦. 微重力下椭圆截面管道内毛细驱动流的研究[C]//中国力学学会流体力学专业委员会. 第十一届全国流体力学学术会议论文摘要集. 2020: 591. |
[3] | 徐泽来, 丁航. 浓度梯度引起的Marangoni效应界面流动数值研究[C]//中国力学学会流体力学专业委员会. 第十届全国流体力学学术会议论文摘要集. 2018: 99. |
[4] | Xu, X. and Luo, J. (2007) Marangoni Flow in an Evaporating Water Droplet. Applied Physics Letters, 91, Article 124102. https://doi.org/10.1063/1.2789402 |
[5] | 金哲岩, 胡晖. 接触面温度对表面液滴蒸发过程的影响[J]. 同济大学学报, 2012, 40(3): 495-498. |
[6] | 徐巧变, 周乐平, 杜小泽, 杨勇平. 固着液滴蒸发薄液膜区传质传热特性数值研究[J]. 工程热物理学报, 2018, 39(12): 2755-2760. |
[7] | 高鹏, 尹兆华, 胡文瑞. 液滴热毛细迁移问题的研究进展[J]. 力学进展, 2008, 38(3): 329-338. |
[8] | Maxwell, J.C. (1890) Diffusion. Collected Scientific Papers. |
[9] | Picknett, R.G. and Bexon, R. (1977) The Evaporation of Sessile or Pendant Drops in Still Air. Journal of Colloid and Interface Science, 61, 336-350. https://doi.org/10.1016/0021-9797(77)90396-4 |
[10] | Lopes, M.C., Bonaccurso, E., Gambaryan-Roisman, T. and Stephan, P. (2013) Influence of the Substrate Thermal Properties on Sessile Droplet Evaporation: Effect of Transient Heat Transport. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432, 64-70. https://doi.org/10.1016/j.colsurfa.2013.04.017 |
[11] | Ait Saada, M., Chikh, S. and Tadrist, L. (2013) Evaporation of a Sessile Drop with Pinned or Receding Contact Line on a Substrate with Different Thermophysical Properties. International Journal of Heat and Mass Transfer, 58, 197-208. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.026 |
[12] | Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. and Witten, T.A. (1997) Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature, 389, 827-829. https://doi.org/10.1038/39827 |
[13] | Hu, H. and Larson, R.G. (2005) Analysis of the Microfluid Flow in an Evaporating Sessile Droplet. Langmuir, 21, 3963-3971. https://doi.org/10.1021/la047528s |
[14] | Girard, F. and Antoni, M. (2008) Influence of Substrate Heating on the Evaporation Dynamics of Pinned Water Droplets. Langmuir, 24, 11342-11345. https://doi.org/10.1021/la8012206 |
[15] | Ghasemi, H. and Ward, C.A. (2010) Energy Transport by Thermocapillary Convection during Sessile-Water-Droplet Evaporation. Physical Review Letters, 105, Article 136102. https://doi.org/10.1103/physrevlett.105.136102 |