|
建筑修复用改性NHL砂浆的抗裂控制与粘结特性
|
Abstract:
本文针对历史建筑修复中天然水硬性石灰(NHL)砂浆易塑性收缩开裂、粘结性能不足等问题,通过掺入生石灰、低碱水泥及稻壳、纸巾纤维等改性材料,系统研究了改性NHL砂浆的抗裂性能与粘结特性。实验设计了8组配合比(C0~C7),在实验室模拟(大风环境)和现场施工条件下,对比分析了裂缝数量、长度、最大宽度及28 d粘结强度。结果表明:混掺10%生石灰与10%低碱水泥(C3)可显著减少裂缝,而进一步添加5%稻壳纤维和5%纸巾纤维(C5)可实现零开裂;低碱水泥掺量为30% (C6)时粘结强度最优,粘结强度达0.25 MPa。但掺量增至50% (C7组)时因体积失稳引发开裂。现场施工验证了实验室结论,室外环境下纤维的桥连与保水作用有效抑制了恶劣气候引起的开裂。本研究为历史建筑修复提供了一种抗裂性强、兼容性高且可规模化的改性NHL砂浆解决方案,兼具文化遗产保护与工程实践价值。
In this paper, to address the problems of natural hydraulic lime (NHL) mortar’s susceptibility to plastic shrinkage and cracking and insufficient bonding performance in the restoration of historical buildings, the anti-cracking performance and bonding characteristics of the modified NHL mortar were systematically studied by mixing quicklime, low alkali cement and modified materials such as rice husk and tissue paper fiber. Eight groups of mixing ratios (C0~C7) were designed, and the number of cracks, length, maximum width and 28 d bond strength were comparatively analyzed under laboratory simulation (windy environment) and on-site construction conditions. The results show that: mixing 10% quicklime and 10% low alkali cement (C3) can significantly reduce the cracks, and further adding 5% rice husk fiber and 5% paper towel fiber (C5) can achieve zero cracking; the bond strength of low alkali cement is optimal when the dosage of low alkali cement is 30% (C6), with a bond strength of 0.25 MPa; however, the dosage is increased to 50% (C7), which triggers the cracking due to the volumetric instability. The field construction verified the laboratory conclusion that the bridging and water retention effects of fibers in the outdoor environment effectively inhibited the cracking caused by severe weather. This study provides a crack-resistant, highly compatible and scalable modified NHL mortar solution for the restoration of historic buildings, which is valuable for both cultural heritage preservation and engineering practice.
[1] | 陈娟. 古建筑保护在城市更新中的意义与策略[J]. 美与时代(城市版), 2024(4): 18-20. |
[2] | van Hees, R.P.J., Binda, L., Papayianni, I. and Toumbakari, E. (2004) Characterisation and Damage Analysis of Old Mortars. Materials and Structures, 37, 644-648. https://doi.org/10.1007/bf02483293 |
[3] | 彭反三. 天然水硬性石灰[J]. 石灰, 2009(3): 44-48. |
[4] | 李之吉, 张植萌. 历史建筑修复中原真性的探讨——以长春敷岛寮旧址为例[J]. 吉林建筑大学学报, 2022, 39(1): 50-54. |
[5] | 徐树强, 马清林. 文物建筑修复用天然水硬性石灰基砂浆的研究进展[J]. 石窟与土遗址保护研究, 2022, 1(2): 81-92. |
[6] | 王小燕, 曹力强, 叶武平, 等. 历史建筑砖石结构修复用注浆材料的制备研究[J]. 新型建筑材料, 2024(5): 33-35+51. |
[7] | 顾立龙, 商怀帅, 吴亚月. 偏高岭土在人造水硬性石灰修复砂浆中的应用研究[J]. 硅酸盐通报, 2023, 42(12): 4351-4359+4367. |
[8] | 刘泽, 王琳琳, 姜启衎, 等. 水泥用石灰岩制备天然水硬性石灰NHL2的工艺优化与性能研究[J]. 硅酸盐通报, 2019(8): 2513-2517. |
[9] | 杨建林, 宋文伟, 王玉贵, 等. 古建筑用水硬性石灰的合成及力学性能研究[J]. 硅酸盐通报, 2018, 37(8): 2633-2639. |
[10] | 常洪雷, 陈繁育, 曲明月, 等. 生石灰和膨胀剂对砂浆自修复性能的影响[J]. 东南大学学报(自然科学版), 2020, 50(6): 1014-1022. |
[11] | 杨莎, 钱觉时, 熊青青, 等. 低碱水泥凝结异常与机理分析[J]. 硅酸盐学报, 2017, 45(8): 1136-1143. |
[12] | Badagliacco, D., Megna, B. and Valenza, A. (2020) Induced Modification of Flexural Toughness of Natural Hydraulic Lime Based Mortars by Addition of Giant Reed Fibers. Case Studies in Construction Materials, 13, e00425. https://doi.org/10.1016/j.cscm.2020.e00425 |
[13] | 马一平, 余少同, 游璐, 等. 纤维参数对水泥基材料减裂效果的影响[J]. 建筑材料学报, 2018, 21(5): 797-802. |
[14] | Carmona, V.B., Oliveira, R.M., Silva, W.T.L., Mattoso, L.H.C. and Marconcini, J.M. (2013) Nanosilica from Rice Husk: Extraction and Characterization. Industrial Crops and Products, 43, 291-296. https://doi.org/10.1016/j.indcrop.2012.06.050 |
[15] | 徐飞, 杨隽永, 杨毅. 水硬石灰作为贺兰口岩画加固材料的耐候性能研究[J]. 文物保护与考古科学, 2016, 28(4): 31-39. |
[16] | 张坤, 刘妍, 杨富巍. 传统水硬性灰浆性能的影响因素综述[J]. 文物保护与考古科学, 2023(3): 130-137. |
[17] | Grist, E.R., Paine, K.A., Heath, A., Norman, J. and Pinder, H. (2015) The Environmental Credentials of Hydraulic Lime-Pozzolan Concretes. Journal of Cleaner Production, 93, 26-37. https://doi.org/10.1016/j.jclepro.2015.01.047 |
[18] | 杨建林, 白雨鑫, 王来贵. 不同龄期水硬性石灰力学性能变化规律及机理研究[J]. 实验力学, 2022, 37(3): 419-429. |
[19] | 徐树强, 王乐乐, 马清林, 等. 天然水硬性石灰在不同碳化条件下的水化反应[J]. 文物保护与考古科学, 2017, 29(4): 1-8. |