|
基于振动响应和SVM的结构损伤识别方法研究
|
Abstract:
针对工程实际中一些梁结构需要进行长期结构健康监测的需求,本文提出了一种基于应变模态柔度及其衍生指标以及支持向量机的在线损伤识别方法。通过损伤试验,选取等截面梁为研究对象,使用协方差驱动的随机子空间法识别其应变模态参数,构建损伤指标。最后,运用机器学习中的支持向量机分类算法实现损伤识别,并对四种基于应变模态柔度及其衍生指标的方法进行比较和评估,验证了该方法的可行性。结果表明,采用应变模态柔度及其衍生指标与支持向量机的识别方法能够用较少的试验数据样本实现梁结构的损伤定位,其中以应变模态柔度曲率差作为损伤指标的效果最佳。
In response to the demand for long-term structural health monitoring of certain beam structures in practical engineering applications, this paper proposes an online damage identification method that relies on strain modal flexibility, its derived indicators, and support vector machine (SVM) techniques. Experimental damage tests were conducted on beams with equal cross-sections as the research subjects. The covariance-driven random subspace method was employed to identify the strain modal parameters and construct damage indicators. Finally, the SVM classification algorithm from machine learning was utilized for damage identification. A comparative evaluation of four methods based on strain modal flexibility and its derived indicators was conducted to validate the feasibility of the proposed approach. The results demonstrate that the damage identification method utilizing strain modal flexibility and its derived indicators in conjunction with SVM can achieve effective damage localization in beam structures with a reduced number of experimental data samples. Among the investigated indicators, the strain modal flexibility curvature difference emerges as the most optimal damage indicator.
[1] | 项长生, 李凌云, 周宇, 等. 基于模态曲率效用信息熵的梁结构损伤识别[J]. 振动与冲击, 2020, 39(17): 234-244. |
[2] | Zar, A., Hussain, Z., Akbar, M., et al. (2024) Towards Vibration-Based Damage Detection of Civil Engineering Structures: Over-View, Challenges, and Future Prospects. International Journal of Mechanics and Materials in Design, 20, 591-662. |
[3] | 周正干, 孙广开. 先进超声检测技术的研究应用进展[J]. 机械工程学报, 2017, 53(22): 1-10. |
[4] | 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317. |
[5] | 邹云峰, 卢玄东, 阳劲松, 等. 基于应变模态响应重构的损伤识别方法[J]. 工程力学, 2022, 39(9): 225-233. |
[6] | 缪炳荣, 刘俊利, 张盈, 等. 轨道车辆结构振动损伤识别技术综述[J]. 交通运输工程学报, 2021, 21(1): 338-357. |
[7] | Cui, H., Peng, W., Xu, X. and Hong, M. (2019) A Damage Identification Method for a Thin Plate Structure Based on PVDF Sensors and Strain Mode. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233, 4881-4895. https://doi.org/10.1177/0954406219838579 |
[8] | 孙艳丽, 杨娜, 张正涛, 等. 基于核主元分析和支持向量机的结构损伤识别研究[J]. 应用基础与工程科学学报, 2018, 26(4): 888-900. |
[9] | 张汝学, 郑永来, 韩雨莘, 等. 基于模态柔度的高桩码头损伤识别方法研究[J]. 施工技术(中英文), 2023, 52(21): 26-32. |
[10] | 安平和, 邬晓光. 基于支持向量机的梁桥多位置损伤识别研究[J]. 铁道科学与工程学报, 2019, 16(5): 1231-1236. |
[11] | Lei, J., Cui, Y. and Shi, W. (2022) Structural Damage Identification Method Based on Vibration Statistical Indicators and Support Vector Machine. Advances in Structural Engineering, 25, 1310-1322. https://doi.org/10.1177/13694332221073983 |
[12] | Bisheh, H.B. and Amiri, G.G. (2023) Structural Damage Detection Based on Variational Mode Decomposition and Kernel PCA-Based Support Vector Machine. Engineering Structures, 278, Article ID: 115565. https://doi.org/10.1016/j.engstruct.2022.115565 |
[13] | 卓德兵, 陶杰. 采用应变模态柔度曲率差识别结构损伤[J]. 吉首大学学报(自然科学版), 2014, 35(5): 37-42. |
[14] | Drozdowska, M., Szafrnski, M., Szafrnska, A., et al. (2025) Efficacy of Modal Curvature Damage Detection in Various Pre-Damage Data Assumptions and Modal Identification Techniques. Bulletin of the Polish Academy of Sciences: Technical Sciences, 73, e152217. |
[15] | Sun, X., Ilanko, S., Mochida, Y. and Tighe, R.C. (2023) A Review on Vibration-Based Damage Detection Methods for Civil Structures. Vibration, 6, 843-875. https://doi.org/10.3390/vibration6040051 |
[16] | 刘方园, 王水花, 张煜东. 支持向量机模型与应用综述[J]. 计算机系统应用, 2018, 27(4): 1-9. |
[17] | 梁礼明, 钟震, 陈召阳. 支持向量机核函数选择研究与仿真[J]. 计算机工程与科学, 2015, 37(6): 1135-1141. |