|
影像组学在临床预后预测中的价值与挑战:技术发展、临床应用及未来展望
|
Abstract:
在多种疾病领域,例如脑胶质瘤、肺癌、乳腺癌和消化系统肿瘤,影像组学已被成功应用于预后评估与治疗效果预测。近年来,深度学习算法的引入显著提升了影像组学特征提取与模型构建的能力,且多模态数据融合加速了复杂疾病的多维度解析。然而,发展中仍面临若干挑战,包括数据标准化不足、模型可解释性缺失以及多中心验证的局限性等。未来研究需加强学科交叉合作,优化数据共享平台及标准化路径,并开发新型深度学习架构以进一步提升模型效能和临床适用性。此外,影像组学与基因组学等多组学技术的结合,及在大规模临床试验中的应用将成为研究重点。本综述旨在总结影像组学在预后预测中的现状与进展,探讨当前技术瓶颈及展望未来发展方向,以推动影像组学应用的进一步深化。
Radiomics has been successfully applied to prognostic evaluation and treatment efficacy prediction in various disease domains, including glioma, lung cancer, breast cancer, and gastrointestinal tumors. In recent years, the introduction of deep learning algorithms has significantly enhanced the capabilities of radiomic feature extraction and model construction, while multimodal data fusion has accelerated multidimensional analysis of complex diseases. However, several challenges persist in its development, such as insufficient data standardization, lack of model interpretability, and limitations in multicenter validation. Future research should strengthen interdisciplinary collaboration, optimize data-sharing platforms and standardization protocols, and develop novel deep learning architectures to further improve model performance and clinical applicability. Additionally, the integration of radiomics with multi-omics technologies (e.g., genomics) and its application in large-scale clinical trials will become key research priorities. This review aims to summarize the current status and advancements of radiomics in prognostic prediction, discuss existing technical bottlenecks, and outline future directions to promote the deeper integration of radiomics into clinical practice.
[1] | Lohmann, P., Galldiks, N., Kocher, M., Heinzel, A., Filss, C.P., Stegmayr, C., et al. (2021) Radiomics in Neuro-Oncology: Basics, Workflow, and Applications. Methods, 188, 112-121. https://doi.org/10.1016/j.ymeth.2020.06.003 |
[2] | Kocher, M., Ruge, M.I., Galldiks, N. and Lohmann, P. (2020) Applications of Radiomics and Machine Learning for Radiotherapy of Malignant Brain Tumors. Strahlentherapie und Onkologie, 196, 856-867. https://doi.org/10.1007/s00066-020-01626-8 |
[3] | Zhou, M., Scott, J., Chaudhury, B., Hall, L., Goldgof, D., Yeom, K.W., et al. (2017) Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. American Journal of Neuroradiology, 39, 208-216. https://doi.org/10.3174/ajnr.a5391 |
[4] | Sun, Q., Chen, Y., Liang, C., Zhao, Y., Lv, X., Zou, Y., et al. (2021) Biologic Pathways Underlying Prognostic Radiomics Phenotypes from Paired MRI and RNA Sequencing in Glioblastoma. Radiology, 301, 654-663. https://doi.org/10.1148/radiol.2021203281 |
[5] | Xia, T., Zhao, B., Li, B., Lei, Y., Song, Y., Wang, Y., et al. (2023) MRI‐Based Radiomics and Deep Learning in Biological Characteristics and Prognosis of Hepatocellular Carcinoma: Opportunities and Challenges. Journal of Magnetic Resonance Imaging, 59, 767-783. https://doi.org/10.1002/jmri.28982 |
[6] | Qi, Y., Su, G., You, C., Zhang, X., Xiao, Y., Jiang, Y., et al. (2024) Radiomics in Breast Cancer: Current Advances and Future Directions. Cell Reports Medicine, 5, Article ID: 101719. https://doi.org/10.1016/j.xcrm.2024.101719 |
[7] | Chen, M., Copley, S.J., Viola, P., Lu, H. and Aboagye, E.O. (2023) Radiomics and Artificial Intelligence for Precision Medicine in Lung Cancer Treatment. Seminars in Cancer Biology, 93, 97-113. https://doi.org/10.1016/j.semcancer.2023.05.004 |
[8] | Monti, S. (2022) Precision Medicine in Radiomics and Radiogenomics. Journal of Personalized Medicine, 12, Article 1806. https://doi.org/10.3390/jpm12111806 |
[9] | Fajemisin, J.A., Gonzalez, G., Rosenberg, S.A., Ullah, G., Redler, G., Latifi, K., et al. (2024) Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction. Tomography, 10, 1439-1454. https://doi.org/10.3390/tomography10090107 |
[10] | Liu, L., Zhang, H., Rekik, I., Chen, X., Wang, Q. and Shen, D. (2016) Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G. and Wells, W., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016., Springer, 26-34. https://doi.org/10.1007/978-3-319-46723-8_4 |
[11] | Fathi Kazerooni, A., Bagley, S.J., Akbari, H., Saxena, S., Bagheri, S., Guo, J., et al. (2021) Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers, 13, Article 5921. https://doi.org/10.3390/cancers13235921 |
[12] | Wang, S., Xiao, F., Sun, W., Yang, C., Ma, C., Huang, Y., et al. (2022) Radiomics Analysis Based on Magnetic Resonance Imaging for Preoperative Overall Survival Prediction in Isocitrate Dehydrogenase Wild-Type Glioblastoma. Frontiers in Neuroscience, 15, Article 791776. https://doi.org/10.3389/fnins.2021.791776 |
[13] | Lao, J., Chen, Y., Li, Z., Li, Q., Zhang, J., Liu, J., et al. (2017) A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Scientific Reports, 7, Article No. 10353. https://doi.org/10.1038/s41598-017-10649-8 |
[14] | Choi, Y., Ahn, K., Nam, Y., Jang, J., Shin, N., Choi, H.S., et al. (2019) Analysis of Heterogeneity of Peritumoral T2 Hyperintensity in Patients with Pretreatment Glioblastoma: Prognostic Value of MRI-Based Radiomics. European Journal of Radiology, 120, Article ID: 108642. https://doi.org/10.1016/j.ejrad.2019.108642 |
[15] | Bathla, G., Soni, N., Ward, C., Pillenahalli Maheshwarappa, R., Agarwal, A. and Priya, S. (2023) Clinical and Magnetic Resonance Imaging Radiomics-Based Survival Prediction in Glioblastoma Using Multiparametric Magnetic Resonance Imaging. Journal of Computer Assisted Tomography, 47, 919-923. https://doi.org/10.1097/rct.0000000000001493 |
[16] | Tsougos, I., Vamvakas, A., Kappas, C., Fezoulidis, I. and Vassiou, K. (2018) Application of Radiomics and Decision Support Systems for Breast MR Differential Diagnosis. Computational and Mathematical Methods in Medicine, 2018, Article ID: 7417126. https://doi.org/10.1155/2018/7417126 |
[17] | Bortolotto, C., Lancia, A., Stelitano, C., Montesano, M., Merizzoli, E., Agustoni, F., et al. (2020) Radiomics Features as Predictive and Prognostic Biomarkers in NSCLC. Expert Review of Anticancer Therapy, 21, 257-266. https://doi.org/10.1080/14737140.2021.1852935 |
[18] | Liao, C., Lee, C., Yang, H., Chen, C., Chung, W., Wu, H., et al. (2021) Enhancement of Radiosurgical Treatment Outcome Prediction Using MRI Radiomics in Patients with Non-Small Cell Lung Cancer Brain Metastases. Cancers, 13, Article 4030. https://doi.org/10.3390/cancers13164030 |
[19] | Forouzannezhad, P., Maes, D., Hippe, D.S., Thammasorn, P., Iranzad, R., Han, J., et al. (2022) Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes Following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer. Cancers, 14, Article 1228. https://doi.org/10.3390/cancers14051228 |
[20] | Chen, W., Qiao, X., Yin, S., Zhang, X. and Xu, X. (2022) Integrating Radiomics with Genomics for Non-Small Cell Lung Cancer Survival Analysis. Journal of Oncology, 2022, Article ID: 5131170. https://doi.org/10.1155/2022/5131170 |
[21] | Liao, C., Lee, C., Yang, H., Chen, C., Chung, W., Wu, H., et al. (2023) Predicting Survival after Radiosurgery in Patients with Lung Cancer Brain Metastases Using Deep Learning of Radiomics and EGFR Status. Physical and Engineering Sciences in Medicine, 46, 585-596. https://doi.org/10.1007/s13246-023-01234-7 |
[22] | Hao, D., Li, Q., Feng, Q., Qi, L., Liu, X., Arefan, D., et al. (2022) Identifying Prognostic Markers from Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction. Frontiers in Oncology, 11, Article 725889. https://doi.org/10.3389/fonc.2021.725889 |
[23] | Guo, W., Li, H., Zhu, Y., Lan, L., Yang, S., Drukker, K., et al. (2015) Prediction of Clinical Phenotypes in Invasive Breast Carcinomas from the Integration of Radiomics and Genomics Data. Journal of Medical Imaging, 2, Article ID: 041007. https://doi.org/10.1117/1.jmi.2.4.041007 |
[24] | Chu, Y., Li, J., Zeng, Z., Huang, B., Zhao, J., Liu, Q., et al. (2020) A Novel Model Based on CXCL8-Derived Radiomics for Prognosis Prediction in Colorectal Cancer. Frontiers in Oncology, 10, Article 575422. https://doi.org/10.3389/fonc.2020.575422 |
[25] | Zhang, Z., Chen, J., Jiang, H., Wei, Y., Zhang, X., Cao, L., et al. (2020) Gadoxetic Acid-Enhanced MRI Radiomics Signature: Prediction of Clinical Outcome in Hepatocellular Carcinoma after Surgical Resection. Annals of Translational Medicine, 8, 870-870. https://doi.org/10.21037/atm-20-3041 |
[26] | Parr, E., Du, Q., Zhang, C., Lin, C., Kamal, A., McAlister, J., et al. (2020) Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy. Cancers, 12, Article 1051. https://doi.org/10.3390/cancers12041051 |
[27] | Horvat, N., Bates, D.D.B. and Petkovska, I. (2019) Novel Imaging Techniques of Rectal Cancer: What Do Radiomics and Radiogenomics Have to Offer? A Literature Review. Abdominal Radiology, 44, 3764-3774. https://doi.org/10.1007/s00261-019-02042-y |
[28] | Marti-Bonmati, L., Cerdá-Alberich, L., Pérez-Girbés, A., Díaz Beveridge, R., Montalvá Orón, E., Pérez Rojas, J., et al. (2022) Pancreatic Cancer, Radiomics and Artificial Intelligence. The British Journal of Radiology, 95, Article ID: 20220072. https://doi.org/10.1259/bjr.20220072 |
[29] | Shahzadi, I., Zwanenburg, A., Lattermann, A., Linge, A., Baldus, C., Peeken, J.C., et al. (2022) Analysis of MRI and CT-Based Radiomics Features for Personalized Treatment in Locally Advanced Rectal Cancer and External Validation of Published Radiomics Models. Scientific Reports, 12, Article No. 10192. https://doi.org/10.1038/s41598-022-13967-8 |
[30] | Nie, K., Hu, P., Zheng, J., Zhang, Y., Yang, P., Jabbour, S.K., et al. (2022) Incremental Value of Radiomics in 5-Year Overall Survival Prediction for Stage II-III Rectal Cancer. Frontiers in Oncology, 12, Article 779030. https://doi.org/10.3389/fonc.2022.779030 |
[31] | Hao, D., Li, Q., Feng, Q., Qi, L., Liu, X., Arefan, D., et al. (2022) Survivalcnn: A Deep Learning-Based Method for Gastric Cancer Survival Prediction Using Radiological Imaging Data and Clinicopathological Variables. Artificial Intelligence in Medicine, 134, Article ID: 102424. https://doi.org/10.1016/j.artmed.2022.102424 |
[32] | Wan, S., Zhou, T., Che, R., Li, Y., Peng, J., Wu, Y., et al. (2023) CT-Based Machine Learning Radiomics Predicts CCR5 Expression Level and Survival in Ovarian Cancer. Journal of Ovarian Research, 16, Article No. 1. https://doi.org/10.1186/s13048-022-01089-8 |
[33] | Wang, T., Wang, H., Wang, Y., Liu, X., Ling, L., Zhang, G., et al. (2022) MR-Based Radiomics-Clinical Nomogram in Epithelial Ovarian Tumor Prognosis Prediction: Tumor Body Texture Analysis across Various Acquisition Protocols. Journal of Ovarian Research, 15, Article No. 6. https://doi.org/10.1186/s13048-021-00941-7 |
[34] | Rahmim, A., Huang, P., Shenkov, N., Fotouhi, S., Davoodi-Bojd, E., Lu, L., et al. (2017) Improved Prediction of Outcome in Parkinson’s Disease Using Radiomics Analysis of Longitudinal DAT SPECT Images. NeuroImage: Clinical, 16, 539-544. https://doi.org/10.1016/j.nicl.2017.08.021 |
[35] | Bevilacqua, R., Barbarossa, F., Fantechi, L., Fornarelli, D., Paci, E., Bolognini, S., et al. (2023) Radiomics and Artificial Intelligence for the Diagnosis and Monitoring of Alzheimer’s Disease: A Systematic Review of Studies in the Field. Journal of Clinical Medicine, 12, Article 5432. https://doi.org/10.3390/jcm12165432 |
[36] | Shahidi, R., Baradaran, M., Asgarzadeh, A., Bagherieh, S., Tajabadi, Z., Farhadi, A., et al. (2023) Diagnostic Performance of MRI Radiomics for Classification of Alzheimer’s Disease, Mild Cognitive Impairment, and Normal Subjects: A Systematic Review and Meta-analysis. Aging Clinical and Experimental Research, 35, 2333-2348. https://doi.org/10.1007/s40520-023-02565-x |
[37] | Liu, Y., Dong, D., Zhang, L., Zang, Y., Duan, Y., Qiu, X., et al. (2019) Radiomics in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder. European Radiology, 29, 4670-4677. https://doi.org/10.1007/s00330-019-06026-w |
[38] | Wu, T., Liu, Y., Chen, J., Ho, C., Zhang, Y. and Su, M. (2022) Prediction of Poor Outcome in Stroke Patients Using Radiomics Analysis of Intraparenchymal and Intraventricular Hemorrhage and Clinical Factors. Neurological Sciences, 44, 1289-1300. https://doi.org/10.1007/s10072-022-06528-4 |
[39] | Chen, Q., Pan, T., Wang, Y.N., Schoepf, U.J., Bidwell, S.L., Qiao, H., et al. (2023) A Coronary CT Angiography Radiomics Model to Identify Vulnerable Plaque and Predict Cardiovascular Events. Radiology, 307, e221693. https://doi.org/10.1148/radiol.221693 |
[40] | Antonopoulos, A.S., Angelopoulos, A., Tsioufis, K., Antoniades, C. and Tousoulis, D. (2021) Cardiovascular Risk Stratification by Coronary Computed Tomography Angiography Imaging: Current State-of-the-Art. European Journal of Preventive Cardiology, 29, 608-624. https://doi.org/10.1093/eurjpc/zwab067 |
[41] | Nakamori, S., Amyar, A., Fahmy, A.S., Ngo, L.H., Ishida, M., Nakamura, S., et al. (2024) Cardiovascular Magnetic Resonance Radiomics to Identify Components of the Extracellular Matrix in Dilated Cardiomyopathy. Circulation, 150, 7-18. https://doi.org/10.1161/circulationaha.123.067107 |
[42] | Cui, Y. and Yin, F. (2022) Impact of Image Quality on Radiomics Applications. Physics in Medicine & Biology, 67, 15TR03. https://doi.org/10.1088/1361-6560/ac7fd7 |
[43] | Severn, C., Suresh, K., Görg, C., Choi, Y.S., Jain, R. and Ghosh, D. (2022) A Pipeline for the Implementation and Visualization of Explainable Machine Learning for Medical Imaging Using Radiomics Features. Sensors, 22, Article 5205. https://doi.org/10.3390/s22145205 |