|
中药调控铁死亡防治股骨头坏死的相关研究
|
Abstract:
股骨头坏死(osteonecrosis of the femoral head, ONFH)是一种由股骨头血供障碍引发的无菌性骨坏死疾病,其病理机制尚未完全阐明,好发于20-40岁的中青年群体,具有致残率高等特点。近年研究表明,铁死亡(ferroptosis)作为程序性细胞死亡的形式,被证实是股骨头坏死病理进展的关键因素,针对铁死亡的靶向调控策略已成为骨坏死治疗研究的前沿热点。本文就中药干预铁死亡的分子调控网络治疗股骨头坏死研究作一综述。
Osteonecrosis of the femoral head (ONFH) is an aseptic osteonecrosis disease caused by the blood supply disorder of the femoral head. Its pathological mechanism has not been fully elucidated. Recent studies have shown that ferroptosis, as a form of programmed cell death, has been proved to be a key factor in the pathological progression of osteonecrosis of the femoral head. Targeted regulation strategies for ferroptosis have become a research hotspot in the treatment of osteonecrosis. This article reviews the research on the treatment of osteonecrosis of the femoral head with the intervention of traditional Chinese medicine on the molecular regulatory network of ferroptosis.
[1] | 白锐, 刘万林. 激素性股骨头缺血坏死病因学机制研究进展[J]. 内蒙古医学杂志2010, 42(8): 955-958. |
[2] | Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042 |
[3] | Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-Ras-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245. https://doi.org/10.1016/j.chembiol.2008.02.010 |
[4] | Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., et al. (2007) RAS-RAF-MEK-Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature, 447, 865-869. https://doi.org/10.1038/nature05859 |
[5] | Liu, P., Wang, W., Li, Z., Li, Y., Yu, X., Tu, J., et al. (2022) Ferroptosis: A New Regulatory Mechanism in Osteoporosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2634431. https://doi.org/10.1155/2022/2634431 |
[6] | Fang, X., An, P., Wang, H., Wang, X., Shen, X., Li, X., et al. (2015) Dietary Intake of Heme Iron and Risk of Cardiovascular Disease: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrition, Metabolism and Cardiovascular Diseases, 25, 24-35. https://doi.org/10.1016/j.numecd.2014.09.002 |
[7] | McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., et al. (2001) An Iron-Regulated Ferric Reductase Associated with the Absorption of Dietary Iron. Science, 291, 1755-1759. https://doi.org/10.1126/science.1057206 |
[8] | Gulec, S., Anderson, G.J. and Collins, J.F. (2014) Mechanistic and Regulatory Aspects of Intestinal Iron Absorption. American Journal of Physiology-Gastrointestinal and Liver Physiology, 307, G397-G409. https://doi.org/10.1152/ajpgi.00348.2013 |
[9] | Gunshin, H., Mackenzie, B., Berger, U.V., Gunshin, Y., Romero, M.F., Boron, W.F., et al. (1997) Cloning and Characterization of a Mammalian Proton-Coupled Metal-Ion Transporter. Nature, 388, 482-488. https://doi.org/10.1038/41343 |
[10] | 陈春梅, 葛品, 郭翀. 人体铁代谢及其调控因素[J]. 基础医学与临床, 2022, 42(5): 818-823. |
[11] | Chen, H. (2004) Hephaestin Is a Ferroxidase That Maintains Partial Activity in Sex-Linked Anemia Mice. Blood, 103, 3933-3939. https://doi.org/10.1182/blood-2003-09-3139 |
[12] | Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S.J., Moynihan, J., et al. (2000) Positional Cloning of Zebrafish Ferroportin1 Identifies a Conserved Vertebrate Iron Exporter. Nature, 403, 776-781. https://doi.org/10.1038/35001596 |
[13] | Donovan, A., Lima, C.A., Pinkus, J.L., Pinkus, G.S., Zon, L.I., Robine, S., et al. (2005) The Iron Exporter Ferroportin/Slc40a1 Is Essential for Iron Homeostasis. Cell Metabolism, 1, 191-200. https://doi.org/10.1016/j.cmet.2005.01.003 |
[14] | 李红敏, 龙章彪, 韩冰. 铁稳态的维持及铁代谢相关疾病[J]. 中华血液学杂志, 2018, 39(9): 790-792. |
[15] | Iwai, K. (2019) Regulation of Cellular Iron Metabolism: Iron-Dependent Degradation of IRP by SCFFBXL5 Ubiquitin Ligase. Free Radical Biology and Medicine, 133, 64-68. https://doi.org/10.1016/j.freeradbiomed.2018.09.011 |
[16] | Muckenthaler, M. and Hentze, M.W. (1997) Mechanisms for Posttranscriptional Regulation by Iron-Responsive Elements and Iron Regulatory Proteins. In: Jeanteur, P., Ed., Cytoplasmic Fate of Messenger RNA, Springer, 93-115. https://doi.org/10.1007/978-3-642-60471-3_5 |
[17] | Zhang, Y., Huang, X., Qi, B., Sun, C., Sun, K., Liu, N., et al. (2022) Ferroptosis and Musculoskeletal Diseases: “Iron Maiden” Cell Death May Be a Promising Therapeutic Target. Frontiers in Immunology, 13, Article 972753. https://doi.org/10.3389/fimmu.2022.972753 |
[18] | Prasad, A., Rossi, C., Manoharan, R.R., Sedlářová, M., Cangeloni, L., Rathi, D., et al. (2022) Bioactive Compounds and Their Impact on Protein Modification in Human Cells. International Journal of Molecular Sciences, 23, Article 7424. https://doi.org/10.3390/ijms23137424 |
[19] | Vandemoortele, A., Heynderickx, P.M., Leloup, L. and De Meulenaer, B. (2021) Kinetic Modeling of Malondialdehyde Reactivity in Oil to Simulate Actual Malondialdehyde Formation Upon Lipid Oxidation. Food Research International, 140, Article ID: 110063. https://doi.org/10.1016/j.foodres.2020.110063 |
[20] | 付长龙, 梅阳阳, 李西海, 等. H型血管铁死亡对骨质疏松性骨关节炎的影响及调节机制研究[J]. 中国骨质疏松杂志, 2021, 27(1): 139-142. |
[21] | Ursini, F., Maiorino, M., Valente, M., Ferri, L. and Gregolin, C. (1982) Purification from Pig Liver of a Protein Which Protects Liposomes and Biomembranes from Peroxidative Degradation and Exhibits Glutathione Peroxidase Activity on Phosphatidylcholine Hydroperoxides. Biochimica et Biophysica Acta (BBA)—Lipids and Lipid Metabolism, 710, 197-211. https://doi.org/10.1016/0005-2760(82)90150-3 |
[22] | Ursini, F., Maiorino, M. and Gregolin, C. (1985) The Selenoenzyme Phospholipid Hydroperoxide Glutathione Peroxidase. Biochimica et Biophysica Acta (BBA)—General Subjects, 839, 62-70. https://doi.org/10.1016/0304-4165(85)90182-5 |
[23] | Maiorino, M., Conrad, M. and Ursini, F. (2018) GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxidants & Redox Signaling, 29, 61-74. |
[24] | Zong, W., Rabinowitz, J.D. and White, E. (2016) Mitochondria and Cancer. Molecular Cell, 61, 667-676. https://doi.org/10.1016/j.molcel.2016.02.011 |
[25] | Ashton, T.M., McKenna, W.G., Kunz-Schughart, L.A. and Higgins, G.S. (2018) Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clinical Cancer Research, 24, 2482-2490. https://doi.org/10.1158/1078-0432.ccr-17-3070 |
[26] | 吕忱聪, 罗再, 黄陈. 线粒体依赖性铁死亡在胃肠肿瘤中的作用及治疗[J]. 中国生物化学与分子生物学报, 2024, 40(12): 1649-1658. |
[27] | Atashi, F., Modarressi, A. and Pepper, M.S. (2015) The Role of Reactive Oxygen Species in Mesenchymal Stem Cell Adipogenic and Osteogenic Differentiation: A Review. Stem Cells and Development, 24, 1150-1163. https://doi.org/10.1089/scd.2014.0484 |
[28] | Li, X., Han, Y., Guan, Y., Zhang, L., Bai, C. and Li, Y. (2012) Aluminum Induces Osteoblast Apoptosis through the Oxidative Stress-Mediated JNK Signaling Pathway. Biological Trace Element Research, 150, 502-508. https://doi.org/10.1007/s12011-012-9523-5 |
[29] | Sun, F., Zhou, J.L., Liu, Z.L., Jiang, Z.W. and Peng, H. (2022) Dexamethasone Induces Ferroptosis via P53/SLC7A11/GPX4 Pathway in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Biochemical and Biophysical Research Communications, 602, 149-155. https://doi.org/10.1016/j.bbrc.2022.02.112 |
[30] | Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021 |
[31] | Balogh, E., Tolnai, E., Nagy, B., Nagy, B., Balla, G., Balla, J., et al. (2016) Iron Overload Inhibits Osteogenic Commitment and Differentiation of Mesenchymal Stem Cells via the Induction of Ferritin. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1862, 1640-1649. https://doi.org/10.1016/j.bbadis.2016.06.003 |
[32] | Jiang, Z., Wang, H., Qi, G., Jiang, C., Chen, K. and Yan, Z. (2022) Iron Overload‐Induced Ferroptosis of Osteoblasts Inhibits Osteogenesis and Promotes Osteoporosis: An in Vitro and in Vivo Study. IUBMB Life, 74, 1052-1069. https://doi.org/10.1002/iub.2656 |
[33] | 丁强, 刘金富, 田照, 等. 补肾通蚀丸通过调控Nrf2/SLC7A11/GPX4通路介导铁死亡对酒精性股骨头坏死大鼠成骨功能障碍的影响[J]. 中华中医药杂志, 2024, 39(5): 2316-2322. |
[34] | Li, W., Li, W., Zhang, W., Wang, H., Yu, L., Yang, P., et al. (2023) Exogenous Melatonin Ameliorates Steroid-Induced Osteonecrosis of the Femoral Head by Modulating Ferroptosis through GDF15-Mediated Signaling. Stem Cell Research & Therapy, 14, Article No. 171. https://doi.org/10.1186/s13287-023-03371-y |
[35] | 章家皓, 刘予豪, 周驰, 等. 氧化应激促进成骨细胞铁死亡介导激素性股骨头坏死的病理过程[J]. 中国组织工程研究, 2024, 28(20): 3202-3208. |
[36] | Ma, J., Wang, A., Zhang, H., Liu, B., Geng, Y., Xu, Y., et al. (2022) Iron Overload Induced Osteocytes Apoptosis and Led to Bone Loss in Hepcidin−/− Mice through Increasing Sclerostin and RANKL/OPG. Bone, 164, Article ID: 116511. https://doi.org/10.1016/j.bone.2022.116511 |
[37] | 孙露露, 刘乃国. 铁死亡相关基因的研究进展[J]. 国际遗传学杂志, 2019(5): 354-358. |
[38] | 梁学振, 骆帝, 李嘉程, 等. 激素性股骨头坏死中的PTGS2和STAT3: 潜在铁死亡相关诊断生物标志物[J]. 中国组织工程研究, 2023, 27(36): 5898-5904. |
[39] | 李家权, 许锦, 谭子富, 等. 黄芩苷通过调控铁死亡减轻H9c2细胞缺氧复氧损伤及其机制研究[J]. 中医药导报, 2025, 31(2): 13-18. |
[40] | 汪雪莹. 木犀草素通过IL-6/STAT3/GPX4信号通路诱导非小细胞肺癌铁死亡的研究[D]: [硕士学位论文]. 天津: 天津中医药大学, 2024. |
[41] | 黄晓蕾, 葛婷婷, 赵俊松, 等. 人参皂苷Rg1在IL-6诱导的大鼠神经元铁死亡中的作用[J]. 天津医药, 2024, 52(11): 1137-1140. |
[42] | Ye, J., Wei, D., Peng, L. and Chang, T. (2019) Ginsenoside Rb1 Prevents Steroid-Induced Avascular Necrosis of the Femoral Head through the Bone Morphogenetic Protein-2 and Vascular Endothelial Growth Factor Pathway. Molecular Medicine Reports, 20, 3175-3181. https://doi.org/10.3892/mmr.2019.10553 |
[43] | 衡科. Rg1抑制氧化应激预防激素性股骨头坏死的实验研究[D]: [博士学位论文]. 南京: 南京医科大学, 2018. |
[44] | Lan, D., Qi, S., Yao, C., Li, X., Liu, H., Wang, D., et al. (2022) Quercetin Protects Rat BMSCs from Oxidative Stress via Ferroptosis. Journal of Molecular Endocrinology, 69, 401-413. https://doi.org/10.1530/jme-22-0086 |
[45] | 余诗强, 蒋林树, 熊本海. 黄芩素结构与生物学功能关系研究进展[J]. 动物营养学报, 2021, 33(6): 3106-3114. |
[46] | 郭冰清. 黄芩素对Erastin诱导成骨细胞铁死亡的影响及潜在机制[D]: [硕士学位论文]. 南京: 南京中医药大学, 2021. |
[47] | 马万里, 杨红胜, 屈波, 等. 黄芩素预防大鼠激素性股骨头坏死的作用机制[J]. 中国组织工程研究, 2024, 28(23): 3661-3668. |
[48] | 李鹏飞, 刘宏鹏, 李琳琳, 等. 黄芪甲苷通过GATA4途径调控内质网应激对激素性股骨头缺血坏死大鼠的作用机制[J]. 新疆医科大学学报, 2024, 47(10): 1340-1347. |
[49] | Shan, H., Lin, Y., Yin, F., Pan, C., Hou, J., Wu, T., et al. (2023) Effects of Astragaloside IV on Glucocorticoid‐Induced Avascular Necrosis of the Femoral Head via Regulating Akt‐Related Pathways. Cell Proliferation, 56, e13485. https://doi.org/10.1111/cpr.13485 |
[50] | Cao, W., Guo, X., Zheng, H., Li, D., Jia, G. and Wang, J. (2012) Current Progress of Research on Pharmacologic Actions of Salvianolic Acid B. Chinese Journal of Integrative Medicine, 18, 316-320. https://doi.org/10.1007/s11655-012-1052-8 |
[51] | 马良. 丹酚酸B保护地塞米松诱导的骨髓间充质干细胞线粒体动力学紊乱促进成骨[D]: [硕士学位论文]. 武汉: 华中科技大学, 2021. |
[52] | 邵学坤, 王成, 王仪, 等. 鹿角多肽调控SLC7A11/GPX4轴抑制地塞米松诱导的成骨细胞铁死亡[J]. 中国组织工程研究, 2025, 29(14): 2875-2881. |
[53] | 马曼华, 王珊, 孟东方. 葛根素调控miR-30b-5p表达抑制类固醇诱导的兔股骨头坏死[J]. 中国骨质疏松杂志, 2023, 29(12): 1724-1729, 1736. |
[54] | 汤建成, 张悦, 姜睿琛, 等. 淫羊藿苷对激素诱导大鼠骨微血管内皮细胞铁死亡的影响[J]. 中国实验方剂学杂志, 2025, 31(5): 131-140. |
[55] | 徐涛涛, 金红婷, 廖菲, 等. 右归饮含药血清促进人血管内皮细胞增殖及抗氧化损伤的作用研究[J]. 浙江中医药大学学报, 2014, 38(8): 933-938. |
[56] | 刘华, 魏爱淳, 秦广珍, 等. 双合汤对酒精性股骨头坏死兔微循环的影响[J]. 中国现代医学杂志, 2015, 25(29): 39-43. |