全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chemical Structure of a Novel Xylogalactan Isolated from Commercially Cultured Seagrape, Caulerpa lentillifera

DOI: 10.4236/abc.2025.153006, PP. 70-79

Keywords: Novel Xylogalactan, NMR Analysis, Methylation Analysis, Chemical Structure, Caulerpa lentillifera

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel xylogalactan was isolated from green seaweed named Seagrape, Caulerpa lentillifera, which is commercially cultured in Okinawa, Japan. D-galactose (molar ratio, 2.7) and D-xylose (1.0) were identified by HPAEC analysis. The optical rotation was estimated to be +0.005? at 25?C, but decreased to ?0.001? at 50?C, indicating α- and β-linkages co-involved. D-galactose and D-xylose were also identified from infrared spectrum that was the first to report. The spectrum indicated that the xylogalactan was involved in both α- (small peak) and β-(large) glycosides. Well resolved 13C-NMR spectrum was obtained and assigned to be 1,4-linked α-D-galactose (large) and 1,3-linked β-D-xylose (small). All ring 13C-NMR (C-2-C-6) were assigned and some C-6 of 1,4-linked α-D-galactose residues were estimated to be a branching sugar. From 1H-NMR spectrum, 1,4-linked α-D-galactose, terminal and 1,3-linked β-D-xylose were assigned. Methylation analysis was used to identify 2,3,4-tri-O-methyl-D-Xylp (terminal; 0.6 mol), 2,4-di-O-methyl-D-Xylp (13-linked; 2.4), 2,3,6-tri-O-methyl-D-Galp (14-linked; 3.2), 2-mono-methyl-D-Xylp (13,4-linked; 0.3), and 2,3-di-O-methyl-D-Galp (14,6)-linked; 1.0). The structure of a novel xylogalactan was branching trisaccharide side-chains, β-D-Xylp-(13)-β-D-Xylp-(13)-β-D-Xylp-(1), at C-6 of 1,4-linked α-D-Galactoses main-chain.

References

[1]  Tako, M. (1994) Identification of Agar from Gracilaria blodgettii and Its Gelling Characteristics. Ohyo Tohshitsu Kagaku, 41, 305-311.
[2]  Tako, M., Higa, M., Medoruma, K. and Nakasone, Y. (1999) A Highly Methylated Agar from Red Seaweed, Gracilaria arcuata. Botanica Marina, 42, 513-517.
https://doi.org/10.1515/bot.1999.058
[3]  Qi, X.Q., Tako, M. and Toyama, S. (1997) Chemical Characterization of κ-Carrageenan from Hypnea charoides. Journal of Applied Glycoscience, 44, 137-142.
[4]  Lin, L., Tako, M. and Hongo, F. (2000) Isolation and Characterization of ι-Carrageenan from Eucheuma serra (Togekirinsai). Journal of Applied Glycoscience, 47, 303-310.
https://doi.org/10.5458/jag.47.303
[5]  Tako, M., Uehara, M., Kawashima, Y., Chinen, I. and Hongo, F. (1996) Isolation and Identification of Fucoidan from Cladosiphon okamuranus. Ohyo Toshitsu Kagaku, 43, 141-148.
[6]  Tako, M., Nakada, T. and Hongou, F. (1999) Chemical Characterization of Fucoidan from Commercially Cultured Nemacystus decipiens (Itomozuku). Bioscience, Biotechnology, and Biochemistry, 63, 1813-1815.
https://doi.org/10.1271/bbb.63.1813
[7]  Shiroma, R., Uechi, S., Taira, T., Ishihara, M., Tawata, S. and Tako, M. (2003) Isolation and Characterization of Fucoidan from Hizikia fusiformis (Hijiki). Journal of Applied Glycoscience, 50, 361-365.
https://doi.org/10.5458/jag.50.361
[8]  Tako, M., Yoza, E. and Tohma, S. (2000) Chemical Characterization of Acetyl Fucoidan and Alginate from Commercially Cultured Cladosiphon okamuranus. Botanica Marina, 43, 393-398.
https://doi.org/10.1515/bot.2000.040
[9]  Tako, M., Kiyuna, S., Uechi, S. and Hongo, F. (2001) Isolation and Characterization of Alginic Acid from Commercially Cultured Nemacystus decipiens (Itomozuku). Bioscience, Biotechnology, and Biochemistry, 65, 654-657.
https://doi.org/10.1271/bbb.65.654
[10]  Pakdee, P., Kinjyo, K., Tako, M., Tamaki, Y., Tomita, Y. and Yaga, S. (1995) Water-Soluble Polysaccharide from Seeds of Trees I. Galactomannan from Seeds of Leucaena leucocephala de WIT. Mokuzai Gakkaishi, 41, 440-443.
[11]  Tamaki, Y., Teruya, T. and Tako, M. (2010) The Chemical Structure of Galactomannan Isolated from Seeds of Delonix regia. Bioscience, Biotechnology, and Biochemistry, 74, 1110-1112.
https://doi.org/10.1271/bbb.90935
[12]  Tako, M., Tamaki, Y. and Teruya, T. (2018) Discovery of Unusual Highly Branched Galactomannan from Seeds of Desmanthus illinoensis. Journal of Biomaterials and Nanobiotechnology, 9, 101-116.
https://doi.org/10.4236/jbnb.2018.92009
[13]  Tamaki, Y., Uechi, S., Taira, T., Ishihara, M., Adaniya, S., Uesato, K., et al. (2004) Isolation and Characterization of Pectin from Pericarp of Citrus depressa. Journal of Applied Glycoscience, 51, 19-25.
https://doi.org/10.5458/jag.51.19
[14]  Tamaki, Y., Konishi, T., Fukuta, M. and Tako, M. (2008) Isolation and Structural Characterisation of Pectin from Endocarp of Citrus depressa. Food Chemistry, 107, 352-361.
https://doi.org/10.1016/j.foodchem.2007.08.027
[15]  Tamaki, Y., Konishi, T. and Tako, M. (2008) Isolation and Characterization of Pectin from Peel of Citrus tankan. Bioscience, Biotechnology, and Biochemistry, 72, 896-899.
https://doi.org/10.1271/bbb.70706
[16]  Nakamura, M., Yamashiro, Y., Konishi, T., Hanasiro, I. and Tako, M. (2011) Structural Characterization of Rhamnan Sulfate Isolated from Commercially Cultured Monostroma nitidum (Hitoegusa). Nippon Shokuhin Kagaku Kogaku Kaishi, 58, 245-251.
https://doi.org/10.3136/nskkk.58.245
[17]  Tako, M., Tamanaha, M., Tamashiro, Y. and Uechi, S. (2015) Structure of Ulvan Isolated from the Edible Green Seaweed, Ulva pertusa. Advances in Bioscience and Biotechnology, 6, 645-655.
https://doi.org/10.4236/abb.2015.610068
[18]  Tako, M. (2003) Rheological Characteristics of Fucoidan Isolated from Commercially Cultured Cladosiphon okamuranus. Botanica Marina, 46, 461-465.
https://doi.org/10.1515/bot.2003.047
[19]  Teruya, T., Konishi, T., Uechi, S., Tamaki, H. and Tako, M. (2007) Anti-Proliferative Activity of Oversulfated Fucoidan from Commercially Cultured Cladosiphon okamuranus TOKIDA in U937 Cells. International Journal of Biological Macromolecules, 41, 221-226.
https://doi.org/10.1016/j.ijbiomac.2007.02.010
[20]  Teruya, T., Tatemoto, H., Konishi, T. and Tako, M. (2009) Structural Characteristics and in Vitro Macrophage Activation of Acetyl Fucoidan from Cladosiphon okamuranus. Glycoconjugate Journal, 26, 1019-1028.
https://doi.org/10.1007/s10719-008-9221-x
[21]  Konishi, T., Nakata, I., Miyagi, Y. and Tako, M. (2012) Extraction of β-1,3 Xylan from Green Seaweed, Caulerpa lentillifera. Journal of Applied Glycoscience, 59, 161-163.
https://doi.org/10.5458/jag.jag.jag-2011_025
[22]  Maeda, R., Ida, T., Ihara, H. and Sakamoto, T. (2012) Immunostimulatory Activity of Polysaccharides Isolated from Caulerpa lentillifera on Macrophage Cells. Bioscience, Biotechnology, and Biochemistry, 76, 501-505.
https://doi.org/10.1271/bbb.110813
[23]  Sun, Y., Gong, G., Guo, Y., Wang, Z., Song, S., Zhu, B., et al. (2018) Purification, Structural Features and Immunostimulatory Activity of Novel Polysaccharides from Caulerpa lentillifera. International Journal of Biological Macromolecules, 108, 314-323.
https://doi.org/10.1016/j.ijbiomac.2017.12.016
[24]  DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356.
https://doi.org/10.1021/ac60111a017
[25]  Ciucanu, I. and Kerek, F. (1984) A Simple and Rapid Method for the Permethylation of Carbohydrates. Carbohydrate Research, 131, 209-217.
https://doi.org/10.1016/0008-6215(84)85242-8
[26]  Hong, T., Yin, J., Nie, S. and Xie, M. (2021) Applications of Infrared Spectroscopy in Polysaccharide Structural Analysis: Progress, Challenge and Perspective. Food Chemistry: X, 12, Article ID: 100168.
https://doi.org/10.1016/j.fochx.2021.100168
[27]  Kohno, M., Suzuki, S., Kanaya, T., Yoshino, T., Matsuura, Y., Asada, M., et al. (2009) Structural Characterization of the Extracellular Polysaccharide Produced by Bifidobacterium longum JBL05. Carbohydrate Polymers, 77, 351-357.
https://doi.org/10.1016/j.carbpol.2009.01.013
[28]  Yamagaki, T., Maeda, M., Kanazawa, K., Ishizuka, Y. and Nakanishi, H. (1996) Structures of Caulerpa Cell Wall Microfibril Xylan with Detection of β-1,3-Xylooligosaccharides as Revealed by Matrix-Assisted Laser Desorption Ionization/Time of Flight/Mass Spectrometry. Bioscience, Biotechnology, and Biochemistry, 60, 1222-1228.
https://doi.org/10.1271/bbb.60.1222
[29]  Yamagaki, T., Maeda, M., Kanazawa, K., Ishizuka, Y. and Nakanishi, H. (1997) Structural Clarification of Caulerpa Cell Wall/M,3-Xylan by NMR Spectroscopy. Bioscience, Biotechnology, and Biochemistry, 61, 1077-1080.
https://doi.org/10.1271/bbb.61.1077
[30]  Vinogradov, E., Petersen, B.O., Duus, J.Ø. and Wasser, S. (2004) The Structure of the Glucuronoxylomannan Produced by Culinary-Medicinal Yellow Brain Mushroom (Tremella mesenterica Ritz.:Fr., Heterobasidiomycetes) Grown as One Cell Biomass in Submerged Culture. Carbohydrate Research, 339, 1483-1489.
https://doi.org/10.1016/j.carres.2004.04.001
[31]  Hsieh, Y.S.Y. and Harris, P.J. (2009) Xyloglucans of Monocotyledons Have Diverse Structures. Molecular Plant, 2, 943-965.
https://doi.org/10.1093/mp/ssp061
[32]  Tako, M., Dobashi, Y., Shimabukuro, J., Yogi, T., Uechi, K., Tamaki, Y., et al. (2013) Structure of a Novel α-Glucan Substitute with the Rare 6-Deoxy-D-Altrose from Lactarius lividatus (Mushroom). Carbohydrate Polymers, 92, 2135-2140.
https://doi.org/10.1016/j.carbpol.2012.11.010
[33]  Schultink, A., Liu, L., Zhu, L. and Pauly, M. (2014) Structural Diversity and Function of Xyloglucan Sidechain Substituents. Plants, 3, 526-542.
https://doi.org/10.3390/plants3040526
[34]  Arruda, I.R.S., Albuquerque, P.B.S., Santos, G.R.C., Silva, A.G., Mourão, P.A.S., Correia, M.T.S., et al. (2015) Structure and Rheological Properties of a Xyloglucan Extracted from Hymenaea courbaril var. Courbaril Seeds. International Journal of Biological Macromolecules, 73, 31-38.
https://doi.org/10.1016/j.ijbiomac.2014.11.001
[35]  Tesvichian, S., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Buakeaw, A., Puthong, S., et al. (2024) Sulfated Polysaccharides from Caulerpa lentillifera: Optimizing the Process of Extraction, Structural Characteristics, Antioxidant Capabilities, and Anti-Glycation Properties. Heliyon, 10, e24444.
https://doi.org/10.1016/j.heliyon.2024.e24444
[36]  Jansson, P.-E., Kenne, L., Liedgren, H., Lindberg, B. and Lonngren, J. (1976) A Practical Guide to the Methylation Analysis of Carbohydrate. Chemistry Communication, No. 8, 1-74.
[37]  Sassaki, G.L., Gorin, P.A.J., Souza, L.M., Czelusniak, P.A. and Iacomini, M. (2005) Rapid Synthesis of Partially O-Methylated Alditol Acetate Standards for GC-MS: Some Relative Activities of Hydroxyl Groups of Methyl Glycopyranosides on Purdie Methylation. Carbohydrate Research, 340, 731-739.
https://doi.org/10.1016/j.carres.2005.01.020
[38]  Tako, M., Taba, H., Uechi, K., Tamaki, Y. and Konishi, T. (2022) Unusually Branched pectin Isolated from a Medicinal Food, Artemisia indica Willd. var. Indica. Journal of Polymer and Biopolymer Physics Chemistry, 10, 1-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133