全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Lithological, Petrographic and Geochemical Data from the Karthala Lava Massif, Grande Comore, Indian Ocean

DOI: 10.4236/ijg.2025.164011, PP. 204-223

Keywords: Grande Comore, Karthala Massif, Mantle Plume, Hot Spot, Oceanic Island Basalts

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Karthala massif, which covers the entire central and southern part of the island of Grande Comore, is made up of massive basalt flows, both vesicular and non-vesicular, pahoehoe and aa-type lavas and oceanite boulders. Petrographic observations of massive basalt flows show porphyritic and vacuolar microlitic textures marked by successive crystallization of opaque minerals, olivines, clinopyroxenes, orthopyroxenes and plagioclases in little or no mesostasis. This crystallization sequence is characteristic of a high-pressure geodynamic environment. The chemical variation of major and trace elements shows that the basalts studied are characterized by an under-saturation in silica (47.44%) and an enrichment in alkalis (1.95%) and titanium (2.33%). The rare-earth spectra of these basalts show a subparallel pattern, suggesting the same source. In the rare earth and multi-element diagram, the Karthala basalts show an alkaline nature, characterized by enrichment in light rare earths (LREE) and large ion lithophile elements (LILE) and depletion in heavy rare earths (HREE) and high field strength elements (HFSE). They also show positive Nb and Ta anomalies, typical of oceanic island basalts (OIBs) emplaced by mantle plume dynamics. These geochemical characteristics are compatible with an enriched, deep-seated garnet lherzolite-type source.

References

[1]  Spāth, A., Roex, A.P.L. and Duncan, R.A. (1996) The Geochemistry of Lavas from the Gomores Archipelago, Western Indian Ocean: Petrogenesis and Mantle Source Region Characteristics. Journal of Petrology, 37, 961-991.
https://doi.org/10.1093/petrology/37.4.961
[2]  Class, C. and Goldstein, S.L. (1997) Plume-Lithosphere Interactions in the Ocean Basins: Constraints from the Source Mineralogy. Earth and Planetary Science Letters, 150, 245-260.
https://doi.org/10.1016/s0012-821x(97)00089-7
[3]  Class, C., Goldstein, S.L., Altherr, R. and Bachelery, P. (1998) The Process of Plume-Lithosphere Interactions in the Ocean Basins—The Case of Grande Comore. Journal of Petrology, 39, 881-903.
https://doi.org/10.1093/petroj/39.5.881
[4]  Claude-Ivanaj, C., Bourdon, B. and Allègre, C.J. (1998) Ra–Th–Sr Isotope Systematics in Grande Comore Island: A Case Study of Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 164, 99-117.
https://doi.org/10.1016/s0012-821x(98)00195-2
[5]  Deniel, C. (1998) Geochemical and Isotopic (Sr, Nd, Pb) Evidence for Plume-Lithosphere Interactions in the Genesis of Grande Comore Magmas (Indian Ocean). Chemical Geology, 144, 281-303.
https://doi.org/10.1016/s0009-2541(97)00139-3
[6]  Famin, V., Michon, L. and Bourhane, A. (2020) The Comoros Archipelago: A Right-Lateral Transform Boundary between the Somalia and Lwandle Plates. Tectonophysics, 789, Article 228539.
https://doi.org/10.1016/j.tecto.2020.228539
[7]  Nougier, J., Cantagrel, J.M. and Karche, J.P. (1986) The Comores Archipelago in the Western Indian Ocean: Volcanology, Geochronology and Geodynamic Setting. Journal of African Earth Sciences (1983), 5, 135-145.
https://doi.org/10.1016/0899-5362(86)90003-5
[8]  Michon, L., Ferrazzini, V. and Di Muro, A. (2015) Magma Paths at Piton de la Fournaise Volcano. In: Bachelery, P., Lenat, J.F., Di Muro, A. and Michon, L., Eds., Active Volcanoes of the World, Springer, 91-106.
https://doi.org/10.1007/978-3-642-31395-0_7
[9]  Dixey, F. (1956) Geol, and Min. Ressource Sup. Ser.71.
[10]  Hajash, A. and Armstrong, R.L. (1972) Paleomagnetic and Radiometric Evidence for the Age of the Comores Islands, West Central Indian Ocean. Earth and Planetary Science Letters, 16, 231-236.
https://doi.org/10.1016/0012-821x(72)90195-1
[11]  Flower, M.F.J. and Strong, D.F. (1969) The Significance of Sandstone Inclusions in Lavas of the Comores Archipelago. Earth and Planetary Science Letters, 7, 47-50.
https://doi.org/10.1016/0012-821x(69)90010-7
[12]  Coffin, M.F. and Rabinowitz, P.D. (1987) Reconstruction of Madagascar and Africa: Evidence from the Davie Fracture Zone and Western Somali Basin. Journal of Geophysical Research: Solid Earth, 92, 9385-9406.
https://doi.org/10.1029/jb092ib09p09385
[13]  Battistini, R. (1996) Paléogéographie et variété des milieux naturels à Madagascar et dans les voisines: Quelques données de base pour l’étude biogéographique de la (re-Gion Malgache). Editions de I’orstom, 1-17.
[14]  Emerick, C.M. and Duncan, R.A. (1982) Age Progressive Volcanism in the Comores Archipelago, Western Indian Ocean and Implications for Somali Plate Tectonics. Earth and Planetary Science Letters, 60, 415-428.
https://doi.org/10.1016/0012-821x(82)90077-2
[15]  Desgrolard, F. (1996) Pétrologie des laves d’un volcan intraplaque océanique: Le Karthala, île de la Grande-Comore (R.F.I. des Comores). Université Joseph-Fourier-Grenoble I, 176.
[16]  Malood, J.A., Mougenot, D., Raillard, S. and Maillard, A. (1991) Nouvelles contraintes sur la cinétique de Madagascar: Les structures de la chaine de Davie. Comptes rendus de lAcadémie des Sciences, 312, 1639-1646.
[17]  Debeuf, D. (2004) Etude de l’évolution volcano-structurale et magmatique de Ma-yotte (Archipel des Comores, Océan Indien): Approches structurale, pétrographique, géochimique et géochronologique. Thèse, Université de La Réunion, 277.
[18]  Bachelery, P. and Coudray, J. (1993) Carte volcano-téctonique de la’Grande Comore Ngazidja au 1/50000 avec notice explicative. Ed. Mission Française de coopération aux Comores.
[19]  Bachèlery, P., Morin, J., Villeneuve, N., Soulé, H., Nassor, H. and Radadi Ali, H. (2015) Structure and Eruptive History of Karthala Volcano. In: Bachèlery, P., Lénat, J.-F., Di Muro, A. and Michon, L., Eds., Active volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala. Active volcanoes of the world, Springer, 345-366.
https://doi.org/10.1007/978-3-642-31395-0
[20]  Barrat, J.A., Zanda, B., Jambon, A. and Bollinger, C. (2014) The Lithophile Trace Elements in Enstatite Chondrites. Geochimica et Cosmochimica Acta, 128, 71-94.
https://doi.org/10.1016/j.gca.2013.11.042
[21]  Sun, S.-S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42, 313-345.
https://doi.org/10.1144/gsl.sp.1989.042.01.19
[22]  Winchester, J.A. and Floyd, P.A. (1977) Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20, 325-343.
https://doi.org/10.1016/0009-2541(77)90057-2
[23]  Pearce, J.A. (1996) A User’s Guide to Basalt Discrimination Diagrams. In: Wyman, D.A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration: Geological Association of Canada, Short Course Notes, Vol. 12, St. John’s, 79-113.
[24]  Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G. (2000) Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67-95.
https://doi.org/10.1016/s0377-0273(00)00182-7
[25]  Pearce, J.A. (2008) Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100, 14-48.
https://doi.org/10.1016/j.lithos.2007.06.016
[26]  Juteau, T. and Maury, M. (2012) La croûte océanique: Pétrologie et dynamique endogène. Livre Publié éDition Vuilert, 579 p.
[27]  Jiang, S., Hawkins, R., Hoggard, M.J., Davies, D.R. and Campbell, I.H. (2024) Investigating the Lid Effect on the Generation of Ocean Island Basalts: 1. Geochemical Trends. Geochemistry, Geophysics, Geosystems, 25, e2023GC011387.
https://doi.org/10.1029/2023gc011387
[28]  Condie, K.C. (2005) High Field Strength Element Ratios in Archean Basalts: A Window to Evolving Sources of Mantle Plumes? Lithos, 79, 491-504.
https://doi.org/10.1016/j.lithos.2004.09.014
[29]  Condie, K.C. (2003) Incompatible Element Ratios in Oceanic Basalts and Komatiites: Tracking Deep Mantle Sources and Continental Growth Rates with Time. Geochemistry, Geophysics, Geosystems, 4, 1-28.
https://doi.org/10.1029/2002gc000333
[30]  Lénat, J., Boivin, P., Deniel, C., Gillot, P. and Bachèlery, P. (2009) Age and Nature of Deposits on the Submarine Flanks of Piton De La Fournaise (Reunion Island). Journal of Volcanology and Geothermal Research, 184, 199-207.
https://doi.org/10.1016/j.jvolgeores.2009.01.013
[31]  Boudoire, G., Brugier, Y.-A., Di Muro, A., Wörner, G., Arienzo, I., Metrich, N., et al. (2019) Eruptive Activity on the Western Flank of Piton De La Fournaise (La Réunion Island, Indian Ocean): Insights on Magma Transfer, Storage and Evolution at an Oceanic Volcanic Island. Journal of Petrology, 60, 1717-1752.
https://doi.org/10.1093/petrology/egz045
[32]  Welsch, B. (2010) Signification des Océanites dans le fonctionnement du Piton de la Fournaise, Île de La Réunion. Thèse de l’Université de La Réunion.
[33]  Kawabata, H., Hanyu, T., Chang, Q., Kimura, J., Nichols, A.R.L. and Tatsumi, Y. (2011) The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-Recycling Model for HIMU OIB. Journal of Petrology, 52, 791-838.
https://doi.org/10.1093/petrology/egr003
[34]  Cissokho, S., Ahamada, A., Ndiaye, A., Yatte, D. and Ngom, P.M. (2023) Contribution to the Petrographic and Geochemical Study of the Karthala Massif Lavas in the Bangaani Area, Grande Comore, Indian Ocean. Open Journal of Geology, 13, 312-336.
https://doi.org/10.4236/ojg.2023.135016
[35]  White, W.M., Tapia, M.D.M. and Schilling, J.-C. (1979) The Petrology and Geochemistry of the Azores Islands. Contributions to Mineralogy and Petrology, 69, 201-213.
https://doi.org/10.1007/bf00372322
[36]  Hansen, H. and Grönvold, K. (2000) Plagioclase Ultraphyric Basalts in Iceland: The Mush of the Rift. Journal of Volcanology and Geothermal Research, 98, 1-32.
https://doi.org/10.1016/s0377-0273(99)00189-4
[37]  Bachèlery, P. and Hémond, C. (2015) Geochemical and Petrological Aspects of Karthala Volcano. In: Bachelery, P., Lenat, J.F., Di Muro, A. and Michon, L., Eds., Active Volcanoes of the World, Springer, 367-384.
https://doi.org/10.1007/978-3-642-31395-0_23
[38]  Bourdon, B., Joron, J., Claude-Ivanaj, C. and Allègre, C.J. (1998) U-Th-Pa-Ra Systematics for the Grande Comore Volcanics: Melting Processes in an Upwelling Plume. Earth and Planetary Science Letters, 164, 119-133.
https://doi.org/10.1016/s0012-821x(98)00227-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133