This paper presents a method for detecting, classifying, and locating short-circuit faults in meshed electrical networks using Artificial Neural Networks (ANNs). The proposed approach is applied to a simulated 220 kV Congolese transmission line model developed in MATLAB/SIMULINK. The system uses voltage and current data as input, which are preprocessed through normalization, and is trained using a supervised backpropagation algorithm within a multilayer perceptron architecture. Designed for developing countries, where real-time fault visualization is often limited by the absence of dispatching centers and budgetary constraints, this solution offers a low-cost, autonomous alternative. It can integrate fault localization technologies, such as GPS or fiber optics. The results demonstrate high accuracy, with a mean square error of 2.3001e?17 for fault detection and 3.5313e?18 for fault classification and localization.
References
[1]
Gogom, M., Oko Ganongo, A., Apila, N. and Lilonga-Boyenga, D. (2020) Optimization of Power Transit through a Double-Term Line Term by the UPFC. Science Journal of Energy Engineering, 8, 44-53. https://doi.org/10.11648/j.sjee.20200804.11
[2]
Hobeika, M.A. (1951) Les problèmes des réseaux électriques maillés et leur solution à l’aide des tables de calcul. PhD Thesis, ETH Zurich.
[3]
Ganongo, A.O., Gogom, M., Nianga-Apila, Obita, L.L.A. and Ganga, G. (2024) Optimisation of Lightning Current Discharge to the Ground in Electrical Networks: Introduction of the Proportionality Coefficient (K). Electric Power Systems Research, 231, Article 110348. https://doi.org/10.1016/j.epsr.2024.110348
[4]
Alali, M.A.E. (2002) Contribution à l’Etude des Compensateurs Actifs des Réseaux Electriques Basse Tension: (Automatisation des systèmes de puissance électriques). PhD Thesis, Université Louis Pasteur (Strasbourg) (1971-2008).
[5]
Belatel, M. (2017) Compensation dans les réseaux electriques par un système facts de type statcom. In 5th International Conference of Renewable Energies CIER-17, 30, 37-42.
[6]
Boutaba, S. (2009) Amelioration de la stabilité d’un réseau par utilisation d’un SVC. PhD Thesis, Universite Hassiba Ben Bouali Chlef, Faculte des Sciences et Sciences de l’Ingenieur.
[7]
Anderson, P.M. and Fouad, A.A. (2008) Power System Control and Stability. John Wiley & Sons.
[8]
Sauer, P.W. and Pai, M.A. (1998) Power System Dynamics and Stability, Prentice-hall. New Jersey.
[9]
Al Kazzaz, S.A.S., Ismaeel, I. and Mohammed, K.K. (2020) Fault Detection and Location of Power Transmission Lines Using Intelligent Distance Relay. International Journal of Power Electronics and Drive Systems (IJPEDS), 11, 726-734. https://doi.org/10.11591/ijpeds.v11.i2.pp726-734
[10]
Zimmerman, K. and Costello, D. (2006) Impedance-Based Fault Location Experience. 2006 IEEE Rural Electric Power Conference, Albuquerque, 9-11 April 2006, 1-16. https://doi.org/10.1109/repcon.2006.1649060
[11]
Das, S., Santoso, S., Gaikwad, A. and Patel, M. (2014) Impedance-Based Fault Location in Transmission Networks: Theory and Application. IEEE Access, 2, 537-557. https://doi.org/10.1109/access.2014.2323353
[12]
Al-Mohammed, A.H. and Abido, M.A. (2014) An Adaptive Fault Location Algorithm for Power System Networks Based on Synchrophasor Measurements. Electric Power Systems Research, 108, 153-163. https://doi.org/10.1016/j.epsr.2013.10.013
[13]
Spoor, D.J. and Zhu, J.G. (2006) Improved Single-Ended Traveling-Wave Fault-Location Algorithm Based on Experience with Conventional Substation Transducers. IEEE Transactions on Power Delivery, 21, 1714-1720. https://doi.org/10.1109/tpwrd.2006.878091
[14]
Lin, S., He, Z.Y., Li, X.P. and Qian, Q.Q. (2012) Travelling Wave Time–Frequency Characteristic-Based Fault Location Method for Transmission Lines. IET Generation, Transmission & Distribution, 6, 764-772. https://doi.org/10.1049/iet-gtd.2011.0703
[15]
Pouabe Eboule, P.S., Pretorius, J.H.C. and Mbuli, N. (2018) Artificial Neural Network Techniques Apply for Fault Detecting and Locating in Overhead Power Transmission Line. 2018 Australasian Universities Power Engineering Conference (AUPEC), Auckland, 27-30 November 2018, 1-6. https://doi.org/10.1109/aupec.2018.8757959
[16]
Buragohain, M. and Mahanta, C. (2008) A Novel Approach for ANFIS Modelling Based on Full Factorial Design. Applied Soft Computing, 8, 609-625. https://doi.org/10.1016/j.asoc.2007.03.010
[17]
Elnozahy, A., Sayed, K. and Bahyeldin, M. (2019) Artificial Neural Network Based Fault Classification and Location for Transmission Lines. 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Aswan, 23-25 October 2019, 140-144. https://doi.org/10.1109/cpere45374.2019.8980173
[18]
Vasilic, S. and Kezunovic, M. (2002) An Improved Neural Network Algorithm for Classifying the Transmission Line Faults. 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), New York, 27-31 January 2002, 918-923. https://doi.org/10.1109/pesw.2002.985139
[19]
Mendoza, E.M.C. (2018) Méthodes de localisation et de détection de défauts d’arcs électriques séries dans un réseau électrique alternatif basse tension. Dissertation, Universite de Lorraine.
[20]
Upadhyay, S., Kapoor, S.R. and Choudhary, R. (2018) Fault Classification and Detection in Transmission Lines Using Ann. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, 11-12 July 2018, 1029-1034. https://doi.org/10.1109/icirca.2018.8597294
[21]
De Metz-Noblat, Benoit, Dumas, F. and Poulain, C. (2005) Calculation of Short-Circuit Currents. Cahier Technique 158.