Mass spectrometry (MS) is a powerful tool for identifying bacteria and fungi. Several attempts have been made to apply the technique in clinical parasitology but not in filarial identification. The study shows that MALDI-TOF-MS is a promising tool to identify Loa loa microfilaria of patients from an endemic country. Loa loa microfilariae were isolated and purified from blood via a Percoll gradient. The microfilaria was separated into different groups from 1 microfilaria to 500 microfilaria specimens. Four extraction procedures were subsequently tested to determine the most adaptable procedure for the quality protein for MALDI-TOF MS analysis. A reference database of spectra was constructed and tested on a panel of 80 isolates. A blind test of 80 spectra was performed against the created library. Results showed that the best protocol for protein extraction used an equal volume of 70% formic acid 100% acetonitrile. Good resolution spectra were obtained at 400 microfilariae. The approach correctly identified all the patients. Ten spectra that were used to build a MS. The LSV obtained after comparison of the spectra with the MSP showed a good technical reproducibility ranged from 1.86 to 2.9, with a mean of 2.398 ± 0.046 and a good biological reproducibility with a mean of 2.13 [1.17 - 2.55]. MALDI-TOF MS is a promising approach, providing rapid and accurate identification of L. loa microfilaria.
References
[1]
Zouré, H.G.M., Wanji, S., Noma, M., Amazigo, U.V., Diggle, P.J., Tekle, A.H., et al. (2011) The Geographic Distribution of Loa loa in Africa: Results of Large-Scale Implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA). PLOSNeglectedTropicalDiseases, 5, e1210. https://doi.org/10.1371/journal.pntd.0001210
[2]
Whittaker, C., Walker, M., Pion, S.D.S., Chesnais, C.B., Boussinesq, M. and Basáñez, M. (2018) The Population Biology and Transmission Dynamics of Loa loa. TrendsinParasitology, 34, 335-350. https://doi.org/10.1016/j.pt.2017.12.003
[3]
Kelly-Hope, L., Paulo, R., Thomas, B., Brito, M., Unnasch, T.R. and Molyneux, D. (2017) Loa loa Vectors Chrysops spp.: Perspectives on Research, Distribution, Bionomics, and Implications for Elimination of Lymphatic Filariasis and Onchocerciasis. Parasites&Vectors, 10, Article No. 172. https://doi.org/10.1186/s13071-017-2103-y
[4]
Akue, J., Eyang-Assengone, E. and Dieki, R. (2018) Loa loa Infection Detection Using Biomarkers: Current Perspectives. ResearchandReportsinTropicalMedicine, 9, 43-48. https://doi.org/10.2147/rrtm.s132380
[5]
Amir, M.M., Shaikh, A.S. and Ashraf, A. (2014) Subconjunctival Loa loa Worm: A Case Report. Pakistan Journal of Ophthalmology, 30.
[6]
Buell, K.G., Whittaker, C., Chesnais, C.B., Jewell, P.D., Pion, S.D.S., Walker, M., et al. (2019) Atypical Clinical Manifestations of Loiasis and Their Relevance for Endemic Populations. OpenForumInfectiousDiseases, 6, ofz417. https://doi.org/10.1093/ofid/ofz417
[7]
Budge, P.J., Herbert, C., Andersen, B.J. and Weil, G.J. (2018) Adverse Events Following Single Dose Treatment of Lymphatic Filariasis: Observations from a Review of the Literature. PLOSNeglectedTropicalDiseases, 12, e0006454. https://doi.org/10.1371/journal.pntd.0006454
[8]
Hoerauf, A., Pfarr, K., Mand, S., Debrah, A.Y. and Specht, S. (2011) Filariasis in Africa—Treatment Challenges and Prospects. ClinicalMicrobiologyandInfection, 17, 977-985. https://doi.org/10.1111/j.1469-0691.2011.03586.x
[9]
Klion, A.D., Ottesen, E.A. and Nutman, T.B. (1994) Effectiveness of Diethylcarbamazine in Treating Loiasis Acquired by Expatriate Visitors to Endemic Regions: Long-Term Follow-Up. JournalofInfectiousDiseases, 169, 604-610. https://doi.org/10.1093/infdis/169.3.604
[10]
Arrey-Agbor, D.B., Nana-Djeunga, H.C., Mogoung-Wafo, A.E., Mafo, M., Danwe, C. and Kamgno, J. (2018) Case Report: Probable Case of Spontaneous Encephalopathy Due to Loiasis and Dramatic Reduction of Loa loa Microfilariaemia with Prolonged Repeated Courses of Albendazole. TheAmericanJournalofTropicalMedicineandHygiene, 99, 112-115. https://doi.org/10.4269/ajtmh.17-0664
[11]
Goussard, B., Ivanoff, B., Frost, E., Garin, Y. and Bourderiou, C. (1984) Age of Appearance of IgG, IgM, and IgE Antibodies Specific for Loa loa in Gabonese Children. MicrobiologyandImmunology, 28, 787-792. https://doi.org/10.1111/j.1348-0421.1984.tb00734.x
[12]
Fink, D.L., Kamgno, J. and Nutman, T.B. (2011) Rapid Molecular Assays for Specific Detection and Quantitation of Loa loa Microfilaremia. PLOSNeglectedTropicalDiseases, 5, e1299. https://doi.org/10.1371/journal.pntd.0001299
[13]
Toure, F.S., Egwang, T.G., Wahl, G., Millet, P., Bain, O. and Georges, A.J. (1997) Species-specific Sequence in the Repeat 3 Region of the Gene Encoding a Putative Loa loa Allergen: A Diagnostic Tool for Occult Loiasis. TheAmericanJournalofTropicalMedicineandHygiene, 56, 57-60. https://doi.org/10.4269/ajtmh.1997.56.57
[14]
TourÃ, F.S., Ungeheuer, M.N., Egwang, T.G. and Deloron, P. (1999) Use of Polymerase Chain Reaction for Accurate Follow-Up of Loa loa Experimental Infection in Mandrillus Sphinx. TheAmericanjournaloftropicalmedicineandhygiene, 61, 956-959. https://doi.org/10.4269/ajtmh.1999.61.956
[15]
Drame, P.M., Meng, Z., Bennuru, S., Herrick, J.A., Veenstra, T.D. and Nutman, T.B. (2016) Identification and Validation of Loa loa Microfilaria-Specific Biomarkers: A Rational Design Approach Using Proteomics and Novel Immunoassays. mBio, 7, e02132-15. https://doi.org/10.1128/mbio.02132-15
[16]
Belkum, A.V., Welker, M., Pincus, D., Charrier, J. and Girard, V. (2017) Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues? AnnalsofLaboratoryMedicine, 37, 475-483. https://doi.org/10.3343/alm.2017.37.6.475
[17]
Clark, A.E., Kaleta, E.J., Arora, A. and Wolk, D.M. (2013) Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. ClinicalMicrobiologyReviews, 26, 547-603. https://doi.org/10.1128/cmr.00072-12
[18]
Fenselau, C. and Demirev, P.A. (2001) Characterization of Intact Microorganisms by MALDI Mass Spectrometry. MassSpectrometryReviews, 20, 157-171. https://doi.org/10.1002/mas.10004
[19]
Chen, X., Hou, X., Xiao, M., Zhang, L., Cheng, J., Zhou, M., et al. (2021) Matrix-assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms, 9, Article 1536. https://doi.org/10.3390/microorganisms9071536
[20]
Croxatto, A., Prod’hom, G. and Greub, G. (2012) Applications of MALDI-TOF Mass Spectrometry in Clinical Diagnostic Microbiology. FEMSMicrobiologyReviews, 36, 380-407. https://doi.org/10.1111/j.1574-6976.2011.00298.x
[21]
Sy, I., Conrad, L. and Becker, S.L. (2022) Recent Advances and Potential Future Applications of MALDI-TOF Mass Spectrometry for Identification of Helminths. Diagnostics, 12, Article 3035. https://doi.org/10.3390/diagnostics12123035
[22]
Reuschenbach, M., Hohrenk-Danzouma, L.L., Schmidt, T.C. and Renner, G. (2022) Development of a Scoring Parameter to Characterize Data Quality of Centroids in High-Resolution Mass Spectra. AnalyticalandBioanalyticalChemistry, 414, 6635-6645. https://doi.org/10.1007/s00216-022-04224-y
[23]
Strejcek, M., Smrhova, T., Junkova, P. and Uhlik, O. (2018) Whole-Cell MALDI-TOF MS versus 16S rRNA Gene Analysis for Identification and Dereplication of Recurrent Bacterial Isolates. FrontiersinMicrobiology, 9, Article 1294. https://doi.org/10.3389/fmicb.2018.01294
[24]
Li, A., Higgs, J.M. and Austin, D.E. (2017) Chaotic Motion of Single Ions in a Toroidal Ion Trap Mass Analyzer. InternationalJournalofMassSpectrometry, 421, 95-103. https://doi.org/10.1016/j.ijms.2017.06.005
[25]
Feucherolles, M., Poppert, S., Utzinger, J. and Becker, S.L. (2019) MALDI-TOF Mass Spectrometry as a Diagnostic Tool in Human and Veterinary Helminthology: A Systematic Review. Parasites&Vectors, 12, Article No. 245. https://doi.org/10.1186/s13071-019-3493-9
[26]
Jakovljev, A. and Bergh, K. (2015) Development of a Rapid and Simplified Protocol for Direct Bacterial Identification from Positive Blood Cultures by Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. BMCMicrobiology, 15, Article No. 258. https://doi.org/10.1186/s12866-015-0594-2
[27]
Carbonnelle, E., Mesquita, C., Bille, E., Day, N., Dauphin, B., Beretti, J., et al. (2011) MALDI-TOF Mass Spectrometry Tools for Bacterial Identification in Clinical Microbiology Laboratory. ClinicalBiochemistry, 44, 104-109. https://doi.org/10.1016/j.clinbiochem.2010.06.017
[28]
Bader, O. (2016) Fungal Species Identification by MALDI-ToF Mass Spectrometry. In: Lion, T., Ed., Human Fungal Pathogen Identification, Springer, 323-337. https://doi.org/10.1007/978-1-4939-6515-1_19
[29]
Sjöholm, M.I.L., Dillner, J. and Carlson, J. (2008) Multiplex Detection of Human Herpesviruses from Archival Specimens by Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. JournalofClinicalMicrobiology, 46, 540-545. https://doi.org/10.1128/jcm.01565-07
[30]
Yssouf, A., Almeras, L., Raoult, D. and Parola, P. (2016) Emerging Tools for Identification of Arthropod Vectors. FutureMicrobiology, 11, 549-566. https://doi.org/10.2217/fmb.16.5
[31]
Rakotonirina, A., Pol, M., Kainiu, M., Barsac, E., Tutagata, J., Kilama, S., et al. (2020) MALDI-TOF MS: Optimization for Future Uses in Entomological Surveillance and Identification of Mosquitoes from New Caledonia. Parasites&Vectors, 13, Article No. 359. https://doi.org/10.1186/s13071-020-04234-8
[32]
Sánchez-Juanes, F., Calvo Sánchez, N., Belhassen García, M., Vieira Lista, C., Román, R.M., Álamo Sanz, R., et al. (2022) Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases. Microorganisms, 10, Article 2300. https://doi.org/10.3390/microorganisms10112300
[33]
Calderaro, A., Piergianni, M., Montecchini, S., Buttrini, M., Piccolo, G., Rossi, S., et al. (2016) MALDI-TOF Mass Spectrometry as a Potential Tool for Trichomonas vaginalis Identification. BMCInfectiousDiseases, 16, Article No. 261. https://doi.org/10.1186/s12879-016-1594-z
[34]
Kassa, F.A., Shio, M.T., Bellemare, M., Faye, B., Ndao, M. and Olivier, M. (2011) New Inflammation-Related Biomarkers during Malaria Infection. PLOSONE, 6, e26495. https://doi.org/10.1371/journal.pone.0026495
[35]
Cassagne, C., Pratlong, F., Jeddi, F., Benikhlef, R., Aoun, K., Normand, A.-., et al. (2014) Identification of Leishmania at the Species Level with Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. ClinicalMicrobiologyandInfection, 20, 551-557. https://doi.org/10.1111/1469-0691.12387
[36]
Mayer-Scholl, A., Murugaiyan, J., Neumann, J., Bahn, P., Reckinger, S. and Nöckler, K. (2016) Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. PLOSONE, 11, e0152062. https://doi.org/10.1371/journal.pone.0152062
[37]
Akue, J.P., Nkoghe, D., Padilla, C., Moussavou, G., Moukana, H., Mbou, R.A., et al. (2011) Epidemiology of Concomitant Infection Due to Loa loa and Mansonella perstans in Gabon. PLOSNeglectedTropicalDiseases, 5, e1329. https://doi.org/10.1371/journal.pntd.0001329
[38]
Mathison, B.A., Couturier, M.R. and Pritt, B.S. (2019) Diagnostic Identification and Differentiation of Microfilariae. JournalofClinicalMicrobiology, 57, e00706-19. https://doi.org/10.1128/jcm.00706-19
[39]
Treviño, B., Zarzuela, F., Oliveira-Souto, I., Maturana, C.R., Serre-Delcor, N., Aznar, M.L., et al. (2023) Unexpected Loa loa Finding in an Asymptomatic Patient from the Gambia: A Case Report. OpenForumInfectiousDiseases, 10, ofad338. https://doi.org/10.1093/ofid/ofad338
[40]
Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. AnalyticalBiochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
[41]
Zofou, D., Fombad, F.F., Gandjui, N.V.T., Njouendou, A.J., Kengne-Ouafo, A.J., Chounna Ndongmo, P.W., et al. (2018) Evaluation of in Vitro Culture Systems for the Maintenance of Microfilariae and Infective Larvae of Loa loa. Parasites&Vectors, 11, Article No. 275. https://doi.org/10.1186/s13071-018-2852-2
[42]
Rojas, A., Rojas, D., Montenegro, V.M. and Baneth, G. (2015) Detection of Dirofilariaimmitis and Other Arthropod-Borne Filarioids by an HRM Real-Time QPCR, Blood-Concentrating Techniques and a Serological Assay in Dogs from Costa Rica. Parasites&Vectors, 8, Article No. 170. https://doi.org/10.1186/s13071-015-0783-8
[43]
Cuénod, A., Foucault, F., Pflüger, V. and Egli, A. (2021) Factors Associated with MALDI-TOF Mass Spectral Quality of Species Identification in Clinical Routine Diagnostics. FrontiersinCellularandInfectionMicrobiology, 11, Article 646648. https://doi.org/10.3389/fcimb.2021.646648
[44]
Matsuda, N., Matsuda, M., Notake, S., Yokokawa, H., Kawamura, Y., Hiramatsu, K., et al. (2012) Evaluation of a Simple Protein Extraction Method for Species Identification of Clinically Relevant Staphylococci by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. JournalofClinicalMicrobiology, 50, 3862-3866. https://doi.org/10.1128/jcm.01512-12
[45]
Yssouf, A., Socolovschi, C., Leulmi, H., Kernif, T., Bitam, I., Audoly, G., et al. (2014) Identification of Flea Species Using MALDI-TOF/MS. ComparativeImmunology, MicrobiologyandInfectiousDiseases, 37, 153-157. https://doi.org/10.1016/j.cimid.2014.05.002
[46]
Li, Y., Shan, M., Zhu, Z., Mao, X., Yan, M., Chen, Y., et al. (2019) Application of MALDI-TOF MS to Rapid Identification of Anaerobic Bacteria. BMCInfectiousDiseases, 19, Article No. 941. https://doi.org/10.1186/s12879-019-4584-0
[47]
Williams, T.L., Andrzejewski, D., Lay, J.O. and Musser, S.M. (2003) Experimental Factors Affecting the Quality and Reproducibility of MALDI TOF Mass Spectra Obtained from Whole Bacteria Cells. JournaloftheAmericanSocietyforMassSpectrometry, 14, 342-351. https://doi.org/10.1016/s1044-0305(03)00065-5
[48]
Nebbak, A. and Almeras, L. (2020) Identification of Aedes Mosquitoes by MALDI-TOF MS Biotyping Using Protein Signatures from Larval and Pupal Exuviae. Parasites&Vectors, 13, Article No. 161. https://doi.org/10.1186/s13071-020-04029-x
[49]
Wendel, T.P., Feucherolles, M., Rehner, J., Poppert, S., Utzinger, J., Becker, S.L., et al. (2021) Evaluating Different Storage Media for Identification of Taeniasaginata Proglottids Using MALDI-TOF Mass Spectrometry. Microorganisms, 9, Article 2006. https://doi.org/10.3390/microorganisms9102006
[50]
Sy, I., Margardt, L., Ngbede, E.O., Adah, M.I., Yusuf, S.T., Keiser, J., et al. (2020) Identification of Adult Fasciola spp. Using Matrix-Assisted Laser/Desorption Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry. Microorganisms, 9, Article 82. https://doi.org/10.3390/microorganisms9010082
[51]
Ouarti, B., Laroche, M., Righi, S., Meguini, M.N., Benakhla, A., Raoult, D., et al. (2020) Development of MALDI-TOF Mass Spectrometry for the Identification of Lice Isolated from Farm Animals. Parasite, 27, Article No. 28. https://doi.org/10.1051/parasite/2020026
[52]
Marzano, V., Pane, S., Foglietta, G., Levi Mortera, S., Vernocchi, P., Onetti Muda, A., et al. (2020) Mass Spectrometry Based-Proteomic Analysis of Anisakis spp.: A Preliminary Study Towards a New Diagnostic Tool. Genes, 11, Article 693. https://doi.org/10.3390/genes11060693
[53]
Nagorny, S.A., Aleshukina, A.V., Aleshukina, I.S., Ermakova, L.A. and Pshenichnaya, N.Y. (2019) The Application of Proteomic Methods (MALDI-Toff MS) for Studying Protein Profiles of Some Nematodes (Dirofilaria and Ascaris) for Differentiating Species. InternationalJournalofInfectiousDiseases, 82, 61-65. https://doi.org/10.1016/j.ijid.2019.02.047
[54]
Fall, F.K., Laroche, M., Bossin, H., Musso, D. and Parola, P. (2021) Performance of MALDI-TOF Mass Spectrometry to Determine the Sex of Mosquitoes and Identify Specific Colonies from French Polynesia. TheAmericanJournalofTropicalMedicineandHygiene, 104, 1907-1916. https://doi.org/10.4269/ajtmh.20-0031