全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Seasonal Microbiological Dynamics of Two Salt Lakes in South-East Nigeria

DOI: 10.4236/aim.2025.156023, PP. 320-342

Keywords: Thalassohaline, Athalassohaline, Halotolerance, Halophiles, Salt Lakes

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Saline lake is a body of water that has salinity greater than 3 g/l (0.3%), while a hypersaline lake is a water body that has the moderate 35 g/l (3.5%) salt of oceans. Hypersaline lakes, could be classified as either thalassohaline (created from of evaporation of seawater which results in sodium chloride as the major salt, and a salinity greater than that of seawater by a factor of 5 - 10, also having a neutral or slightly alkaline pH); or athalassohaline (stems from non-seawater sources with high concentrations of ions such as magnesium and calcium and sundry other ions such as potassium, or sodium in smaller amounts). This work aims at studying the seasonal microbiological dynamics of Uburu and Okposi salt lakes, whose microbiological properties have not been studied till date. A plethora of fungal isolates were recovered from both lakes using various fungal media prepared with the lake water. Isolates were identified using standard microbiological procedures and molecular typing. Halotolerance test was used to classify the isolates according to their abilities to withstand various degrees of salt concentrations. Isolates retrieved in their descending order of salt tolerance include: Aspergillus flavipes (13 mm at 40%), Penicillium citrinum (10 mm at 40%), Aspergillus ochraceus (9 mm at 40%), Aspergillus nomius (15 mm at 35%), Microsphaeropsis arundinis (12 mm at 35%), Aspergillus sydowi (28 mm at 30%), Penicillium janthinellum (26 mm at 30%), Mucor sp. (13 mm at 30%), Aureobasidium sp. (12 mm at 30%), Trichoderma sp. (9 mm at 30%), Alternaria sp. (22 mm at 25%), Aspergillus sp. (18 mm at 25%), Penicillium sp. (20 mm at 20%), Cladosporium sp. (7 mm at 15%). These isolates were classified as borderline extreme halophiles and moderate halophiles, while no slight halophile was isolated.

References

[1]  Williams, W.D. (2002) Environmental Threats to Salt Lakes and the Likely Status of Inland Saline Ecosystems in 2025. Environmental Conservation, 29, 154-167.
https://doi.org/10.1017/s0376892902000103
[2]  Ibo, E.M., Orji, M.U. and Umeh, O.R. (2020) Seasonal Evaluation of the Physicochemical Properties of Some Boreholes Water Samples in Mile 50, Abakaliki Ebonyi State. South Asian Journal of Research in Microbiology, 6, 1-15.
https://doi.org/10.9734/sajrm/2020/v6i130139
[3]  Ibo, E.M., Umeh, O.R., Uba, B.O. and Egwuatu, P.I. (2020) Bacteriological Assessment of Some Borehole Water Samples in Mile 50, Abakaliki, Ebonyi State, Nigeria. Archives of Agriculture and Environmental Science, 5, 179-189.
https://doi.org/10.26832/24566632.2020.0502015
[4]  Okaa, A.I. and Ogu, C.T. (2020) Physicochemical Analysis and Seasonal Variations of Sediment and Water Samples from Selected Surface Waters in Anambra State, Nigeria. International Journal of Environment, Agriculture and Biotechnology, 5, 210-216.
https://doi.org/10.22161/ijeab.51.30
[5]  Obikpo, L., Onyia, F.C., Offe, I.M., Ezeilo, C.M., Ezebialu, C. and Afunwa, R.A. (2022) Bacteriological Quality of Community Well Water and Public Health Concerns in Enugu Urban, Nigeria. African Journal of Clinical and Experimental Microbiology, 23, 190-200.
https://doi.org/10.4314/ajcem.v23i2.10
[6]  Abana, C.C., Anyamene, C.O., Ezebialu, C.U., Okonkwo, N.N., Umeoduagu, N.D., Egurefa, S.O., Okoli, F.A., Udenweze, E.C. and Awari, V.G. (2024) Isolation and Identification of Bacteria and Fungi from Selected Rivers and Lakes. ISAR Journal of Science and Technology, 2, 29-35.
[7]  Grant, W.D. (2004) Life at Low Water Activity. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, 1249-1267.
https://doi.org/10.1098/rstb.2004.1502
[8]  Demergasso, C., Casamayor, E.O., Chong, G., Galleguillos, P., Escudero, L. and Pedrós Alió, C. (2004) Distribution of Prokaryotic Genetic Diversity in Athalassohaline Lakes of the Atacama Desert, Northern Chile. FEMS Microbiology Ecology, 48, 57-69.
https://doi.org/10.1016/j.femsec.2003.12.013
[9]  DasSarma, S. and DasSarma, P. (2012) Encyclopedia of Life Sciences. Wiley.
[10]  Ventosa, A., de la Haba, R.R., Sánchez-Porro, C. and Papke, R.T. (2015) Microbial Diversity of Hypersaline Environments: A Metagenomic Approach. Current Opinion in Microbiology, 25, 80-87.
https://doi.org/10.1016/j.mib.2015.05.002
[11]  Naghoni, A., Emtiazi, G., Amoozegar, M.A., Cretoiu, M.S., Stal, L.J., Etemadifar, Z., et al. (2017) Microbial Diversity in the Hypersaline Lake Meyghan, Iran. Scientific Reports, 7, Article No. 11522.
https://doi.org/10.1038/s41598-017-11585-3
[12]  Agu, K.C., Nmecha, C.O., Nwaiwu, M.O., Ikedinma, J.C., Awah, N.S., Eneite, H.C., et al. (2017) Isolation and Characterization of Halotolerant Bacteria from Ezzu River Amansea, Awka, Anambra State. Bioengineering and Bioscience, 5, 86-90.
https://doi.org/10.13189/bb.2017.050404
[13]  Castelán-Sánchez, H.G., Lopéz-Rosas, I., García-Suastegui, W.A., Peralta, R., Dobson, A.D.W., Batista-García, R.A., et al. (2019) Extremophile Deep-Sea Viral Communities from Hydrothermal Vents: Structural and Functional Analysis. Marine Genomics, 46, 16-28.
https://doi.org/10.1016/j.margen.2019.03.001
[14]  Litchfield, C. and Gillevet, P. (2002) Microbial Diversity and Complexity in Hypersaline Environments: A Preliminary Assessment. Journal of Industrial Microbiology & Biotechnology, 28, 48-55.
https://doi.org/10.1038/sj/jim/7000175
[15]  Gunde-Cimerman, N., Zalar, P., Hoog, S. and Plemenitaa, A. (2000) Hypersaline Waters in Salterns-Natural Ecological Niches for Halophilic Black Yeasts. FEMS Microbiology Ecology, 32, 235-240.
https://doi.org/10.1111/j.1574-6941.2000.tb00716.x
[16]  Ulukanli, Z. and Diğrak, M. (2002) Alkaliphilic Micro-Organisms and Habitats. Turkish Journal of Biology, 26, 181-191.
[17]  Oren, A. (2002) Diversity of Halophilic Microorganisms: Environments, Phylogeny, Physiology, and Applications. Journal of Industrial Microbiology & Biotechnology, 28, 56-63.
https://doi.org/10.1038/sj/jim/7000176
[18]  Cantrell, S.A., Casillas-Martínez, L. and Molina, M. (2006) Characterization of Fungi from Hypersaline Environments of Solar Salterns Using Morphological and Molecular Techniques. Mycological Research, 110, 962-970.
https://doi.org/10.1016/j.mycres.2006.06.005
[19]  Opetubo, O.R., Kitalu, R., Oviroh, P.O., Oyinbo, S.T., Imoisili, P.E. and Jen, T. (2023) A Mini-Review on MoS2 Membrane for Water Desalination: Recent Development and Challenges. Nanotechnology Reviews, 12, Article ID: 20220563.
https://doi.org/10.1515/ntrev-2022-0563
[20]  Okoyeh, E.I. and Egboka, B.C.E. (2013) Evaluation of Hydrochemical Parameters of Okposi and Uburu Salt Lakes, Nigeria. International Journal of Scientific and Engineering Research, 4, 2882-2889.
[21]  Obasi, P.N. and Akudinobi, B.E.B. (2015) Geology, Water Types and Facie Evolution of the Ohaozara Saline Lake Areas of Ebonyi State, Nigeria. International Journal of Scientific and Research Publications, 5, 1-8.
[22]  Nwaka, B. and Enyinna, P. (2016) Gross Alpha and Beta Activity Concentrations in Locally Processed Salt from Ebonyi State, Nigeria. Physical Science International Journal, 12, 1-12.
https://doi.org/10.9734/psij/2016/28111
[23]  Okogbue, C.O. and Ukpai. S.N. (2016) Exploration for Groundwater Using Integra-tion of Aeromagnetic and Electromagnetic Geophysical Methods with Hydrogeologic Pumping test in Uburu-Okposi Salt Lake Areas, Southeast, Nigeria. Journal of Ap-plied Geology and Geophysics, 4, 82-94.
[24]  Anyim, C., Aneke, C.J., Orji, J.O., Nworie O. and Egbule U.C.C. (2012) Microbio-logical Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State. Journal of Natural Sciences Research, 2, 95-102.
[25]  Akubugwo, E.I., Ofoegbu, C.I., Ukwuoma, C.U. (2007) Physicochemical Studies on Uburu Salt Lake Ebonyi State-Nigeria. Pakistan Journal of Biological Sciences, 10, 3170-3174.
https://doi.org/10.3923/pjbs.2007.3170.3174
[26]  Ogbanshi, M.E., Akubugwo, E.I., Onwuchekwa, O., Ali, F.U., Ebenyi, L.N., Offor C.E. and Orinya O.F. (2015) Administration of Water and Salt Samples from Okposi and Uburu Nigerian Salt Lakes Induce Oxidative Stress in the Reproductive Parameters of Adult Male Sprague-Dawley Rats. Global Journal of Pharmacology, 9, 345-351.
[27]  Ogbanshi, M.E., Idenyi, J.N., Ogiji, E.D., Nwali, B.U., Ebenyi L.N. and Ominyi M.C. (2016) Administration of Water Samples from Okposi and Uburu Nigerian Salt Lakes Decreased Sperm Number, Sperm Motility and Sperm Morphology in the Adult Male Sprague-Dawley Rats. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10, 12-17.
[28]  Avwiri, G.O., Nwaka, B.U. and Ononugbo, C.P. (2017) Radiological Health Risk Due to γ Dose Rates around Okposi Okwu and Uburu Salt Lakes, Ebonyi State. International Journal of Environment and Pollution Research, 5, 18-30.
[29]  Oren, A. (2008) Microbial Life at High Salt Concentrations: Phylogenetic and Metabolic Diversity. Saline Systems, 4, Article No. 2.
https://doi.org/10.1186/1746-1448-4-2
[30]  DasSarma, S.L., Capes, M.D., DasSarma, P. and DasSarma, S. (2010) HaloWeb: The Haloarchaeal Genomes Database. Saline Systems, 6, Article No. 12.
https://doi.org/10.1186/1746-1448-6-12
[31]  Frey, D., Oldfield R.J. and Bridger, R.C. (1979) A Colour Atlas of Pathogenic Fungi. Wolfs Medical Publisher, 1-93.
[32]  Barnett, H.L. and Hunter, B.B. (2000) Illustrated Genera of Imperfect Fungi. 4th Edition, CRC Press, 1-197.
[33]  Watanabe, T. (2002) Morphologies of Cultured Fungi and Key to Species. In: Haddad, S., Dery, E. Norwitz, B.E. and Lewis, R., Eds., Pictorial Atlas of Soil and Seed Fungi (2nd Edition), CRC Press, 1-486.
[34]  Ellis, D., Davis, S., Alexiou, H., Handke, R. and Bartley, R. (2007) Descriptions of Medical Fungi.
https://www.adelaide.edu.au/mycology/ua/media/1596/fungus3-book.pdf
[35]  Macrogen (2014) 16 S rRNA and ITS rDNA Sequencing Menlo park, California, USA and Seoul, Korea.
https://dna.macrogen.com/
[36]  Nazareth, S., Gonsalves, V. and Nayak, S. (2011) A First Record of Obligate Halophilic Aspergilli from the Dead Sea. Indian Journal of Microbiology, 52, 22-27.
https://doi.org/10.1007/s12088-011-0225-z
[37]  Dassama, S. and Arora, P. (2001) Halophiles. Encyclopedia of Life Sciences. John Wiley and Sons, Ltd.
[38]  Oren, A. (2006) The Order Haloanaerobiales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H. and Stackebrandt, E., Eds., The Prokaryotes. A Handbook on the Biology of Bacteria (3rd Edition), Springer, 804-817.
[39]  Casamayor, E.O., Massana, R., Benlloch, S., Øvreås, L., Díez, B., Goddard, V.J., et al. (2002) Changes in Archaeal, Bacterial and Eukaryal Assemblages along a Salinity Gradient by Comparison of Genetic Fingerprinting Methods in a Multipond Solar Saltern. Environmental Microbiology, 4, 338-348.
https://doi.org/10.1046/j.1462-2920.2002.00297.x
[40]  Gunde-Cimerman, N., Frisvad, J.C., Zalar, P. and Plemenitas, A. (2005) Halotolerant and Halophilic Fungi. In: Deshmukh, S.K. and Rai, M.K., Eds., Biodiversity of Fungi: Their Role in Human Life, IBH Publishing Co. Pvt. Ltd., 69-127.
[41]  Butinar, L., Sonjak, S., Zalar, P., Plemenitaš, A. and Gunde-Cimerman, N. (2005) Melanized Halophilic Fungi Are Eukaryotic Members of Microbial Communities in Hypersaline Waters of Solar Salterns. Botanica Marina, 48, 73-79.
https://doi.org/10.1515/bot.2005.007
[42]  Plemenitaš, A. and Gunde-Cimerman, N. (2005) Cellular Reponses in the Halophilic Black Yeast Hortaea weneckii to High Environmental Salinity. In: Gunde-Cimerman, N., Oren, A. and Plemenitaš, A., Eds., Adaptation to Life at High Salt Concentrations in Archea, Bacteria and Eukarya, Springer, 455-470.
[43]  Gunde-Cimerman, N., Ramos, J. and Plemenitaš, A. (2009) Halotolerant and Halophilic Fungi. Mycological Research, 113, 1231-1241.
https://doi.org/10.1016/j.mycres.2009.09.002
[44]  Mansour, M.M.A. (2017) Effects of the Halophilic Fungi Cladosporium sphaerospermum, Wallemia sebi, Aureobasidium pullulans and Aspergillus nidulans on Halite Formed on Sandstone Surface. International Biodeterioration & Biodegradation, 117, 289-298.
https://doi.org/10.1016/j.ibiod.2017.01.016
[45]  DasSarma, S. (2006) Extreme Halophiles Are Models for Astrobiology. Microbe Magazine, 1, 120-126.
https://doi.org/10.1128/microbe.1.120.1
[46]  Nadumane, V.K., Venkatachalam, P. and Gajaraj, B. (2016) Aspergillus Applications in Cancer Research. In: Gupta, V.K., Ed., New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 243-255.
https://doi.org/10.1016/b978-0-444-63505-1.00020-8
[47]  Yovchevska, L., Gocheva, Y., Stoyancheva, G., Miteva-Staleva, J., Dishliyska, V., Abrashev, R., et al. (2025) Halophilic Fungi—Features and Potential Applications. Microorganisms, 13, Article 175.
https://doi.org/10.3390/microorganisms13010175
[48]  Dutta, B. and Bandopadhyay, R. (2022) Biotechnological Potentials of Halophilic Microorganisms and Their Impact on Mankind. Beni-Suef University Journal of Basic and Applied Sciences, 11, Article No. 75.
https://doi.org/10.1186/s43088-022-00252-w

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133