|
原发性肾性糖尿患儿1例并基因突变分析
|
Abstract:
目的:探讨1例儿童原发性肾性糖尿病(PRG)的临床表现及基因突变特点。方法:回顾1例PRG患儿的临床表现、实验室及影像学检查、基因检测结果。结果:女性学龄期儿童。多次尿糖阳性,血糖正常。通过聚合酶链反应,采集患儿及其父母外周血DNA中的SLC5A2基因进行扩增、测序分析,以明确突变情况。结果显示,患儿SLC5A2基因cDNA序列的第1540位胞嘧啶C突变为胸腺嘧啶T (c.1540C > T),造成所编码的氨基酸第514位由脯氨酸改变为丝氨酸(p.Pro514Ser),其父为杂合突变。结论:对于反复尿糖阳性而血糖正常的儿童,应考虑PRG可能,可完善基因检测明确诊断。
Objective: To explore the clinical features and genetic mutation profiles of a pediatric case with primary renal glucosuria (PRG). Methods: The clinical manifestations, laboratory and imaging tests, and genetic test results of a child with PRG were reviewed. Results: Female school-age child. Multiple positive urine glucose and normal blood glucose. The SLC5A2 gene in the peripheral blood DNA of the child and her parents was amplified, sequenced, and analyzed by polymerase chain reaction (PCR) to identify potential mutations. The results showed that cytosine C was mutated to thymine T (c.1540C > T) at position 1540 in the cDNA sequence of the SLC5A2 gene of the child, resulting in the change of amino acid encoded by amino acid 514 from proline to serine (p.Pro514Ser), and the child's father had a heterozygous mutation. Conclusion: Primary renal glucosuria (PRG) should be considered in children with recurrent positive urine glucose and normal blood glucose, and genetic testing can be improved to clarify the diagnosis.
[1] | Santer, R., Kinner, M., Lassen, C.L., Schneppenheim, R., Eggert, P., Bald, M., et al. (2003) Molecular Analysis of the SGLT2 Gene in Patients with Renal Glucosuria. Journal of the American Society of Nephrology, 14, 2873-2882. https://doi.org/10.1097/01.asn.0000092790.89332.d2 |
[2] | van den Heuvel, L., Assink, K., Willemsen, M. and Monnens, L. (2002) Autosomal Recessive Renal Glucosuria Attributable to a Mutation in the Sodium Glucose Cotransporter (SGLT2). Human Genetics, 111, 544-547. https://doi.org/10.1007/s00439-002-0820-5 |
[3] | Wells, R.G., Mohandas, T.K. and Hediger, M.A. (1993) Localization of the Na+/Glucose Cotransporter Gene SGLT2 to Human Chromosome 16 Close to the Centromere. Genomics, 17, 787-789. https://doi.org/10.1006/geno.1993.1411 |
[4] | Lee, H., Han, K.H., Park, H.W., Shin, J.I., Kim, C.J., Namgung, M.K., et al. (2012) Familial Renal Glucosuria: A Clinicogenetic Study of 23 Additional Cases. Pediatric Nephrology, 27, 1091-1095. https://doi.org/10.1007/s00467-012-2109-9 |
[5] | Niu, Y., Liu, R., Guan, C., Zhang, Y., Chen, Z., Hoerer, S., et al. (2022) Structural Basis of Inhibition of the Human SGLT2-MAP17 Glucose Transporter. Nature, 601, 280-284. https://doi.org/10.1038/s41586-021-04212-9 |
[6] | Ghezzi, C., Loo, D.D.F. and Wright, E.M. (2018) Physiology of Renal Glucose Handling via SGLT1, SGLT2 and Glut2. Diabetologia, 61, 2087-2097. https://doi.org/10.1007/s00125-018-4656-5 |
[7] | Dorum, S., Erdoğan, H., Köksoy, A.Y., Topak, A. and Görükmez, Ö. (2021) Clinical Features of Pediatric Renal Glucosuria Cases Due to SLC5A2 Gene Variants. Pediatrics International, 64, e14948. https://doi.org/10.1111/ped.14948 |
[8] | Fathi, A., Vickneson, K. and Singh, J.S. (2021) SGLT2-Inhibitors; More than Just Glycosuria and Diuresis. Heart Failure Reviews, 26, 623-642. https://doi.org/10.1007/s10741-020-10038-w |
[9] | 王晓慧, 赵向忠, 李春梅, 等. 中国家族性肾性糖尿SGLT2基因突变分析及表型和基因型相关性研究[J]. 中华肾脏病杂志, 2016, 32(1): 1-8. |
[10] | Yu, L., Lv, J., Zhou, X., Zhu, L., Hou, P. and Zhang, H. (2011) Abnormal Expression and Dysfunction of Novel SGLT2 Mutations Identified in Familial Renal Glucosuria Patients. Human Genetics, 129, 335-344. https://doi.org/10.1007/s00439-010-0927-z |
[11] | Zhao, X., Cui, L., Lang, Y., Liu, T., Lu, J., Wang, C., et al. (2016) A Recurrent Deletion in the SLC5A2 Gene Including the Intron 7 Branch Site Responsible for Familial Renal Glucosuria. Scientific Reports, 6, Article No. 33920. https://doi.org/10.1038/srep33920 |
[12] | Calado, J., Sznajer, Y., Metzger, D., Rita, A., Hogan, M.C., Kattamis, A., et al. (2008) Twenty-One Additional Cases of Familial Renal Glucosuria: Absence of Genetic Heterogeneity, High Prevalence of Private Mutations and Further Evidence of Volume Depletion. Nephrology Dialysis Transplantation, 23, 3874-3879. https://doi.org/10.1093/ndt/gfn386 |
[13] | Sada, K., Hidaka, S., Imaishi, N., Shibata, K., Katashima, R., Noso, S., et al. (2019) Clinical and Genetic Analysis in a Family with Familial Renal Glucosuria: Identification of an N101K Mutation in the Sodium-Glucose Cotransporter 2 Encoded by a Solute Carrier Family 5 Member 2 Gene. Journal of Diabetes Investigation, 11, 573-577. https://doi.org/10.1111/jdi.13157 |
[14] | Elsas, L.J. and Longo, N. (1992) Glucose Transporters. Annual Review of Medicine, 43, 377-393. https://doi.org/10.1146/annurev.me.43.020192.002113 |
[15] | Ren, Q., Gong, S., Han, X. and Ji, L. (2022) Hereditary Renal Glycosuria, Diabetes and Responses to SGLT2 Inhibitor. Journal of Diabetes, 14, 216-220. https://doi.org/10.1111/1753-0407.13254 |
[16] | Van Lerberghe, R., Mahieu, E., Vanuytsel, J., Vanhaute, K., Vanfraechem, C. and Claeys, L. (2023) Familial Renal Glucosuria Presenting as Paroxysmal Glucosuria and Hypercalciuria Due to a Novel SLC5A2 Heterozygous Variant. European Journal of Case Reports in Internal Medicine, 10, Article 004157. https://doi.org/10.12890/2023_004157 |
[17] | Torun Bayram, M. and Kavukcu, S. (2025) Renal Glucosuria in Children. World Journal of Clinical Pediatrics, 14, Article 91622. https://doi.org/10.5409/wjcp.v14.i1.91622 |
[18] | 余自华, 陈丽珠. 肾性糖尿的诊疗现状[J]. 中华实用儿科临床杂志, 2018, 33(17): 1286-1289. |