|
Pure Mathematics 2025
D5型电子李代数的单Quasi-Whittaker模
|
Abstract:
本文主要对D5型电子李代数的单Quasi-Whittaker模进行了分类,通过讨论Quasi-Whittaker模的极大真子模给出了Quasi-Whittaker模是单模的充要条件。
In this paper, we mainly investigate the simple Quasi-Whittaker modules for electrical Lie algebra of Type D5. We discuss the maximum proper submodules of electrical Lie algebra of type D5 and obtain the classification of simple Quasi-Whittaker modules.
[1] | Kostant, B. (1978) On Whittaker Vectors and Representation Theory. Inventiones Mathematicae, 48, 101-184. https://doi.org/10.1007/bf01390249 |
[2] | Benkart, G. and Ondrus, M. (2009) Whittaker Modules for Generalized Weyl Algebras. Representation Theory of the American Mathematical Society, 13, 141-164. https://doi.org/10.1090/s1088-4165-09-00347-1 |
[3] | Guo, X. and Liu, X. (2011) Whittaker Modules over Generalized Virasoro Algebras. Communications in Algebra, 39, 3222-3231. https://doi.org/10.1080/00927872.2010.499119 |
[4] | Chen, H. and Guo, X. (2013) New Simple Modules for the Heisenberg-Virasoro Algebra. Journal of Algebra, 390, 77-86. https://doi.org/10.1016/j.jalgebra.2013.04.039 |
[5] | Cai, Y., Cheng, Y. and Shen, R. (2014) Quasi-Whittaker Modules for the Schrödinger Algebra. Linear Algebra and Its Applications, 463, 16-32. https://doi.org/10.1016/j.laa.2014.09.001 |
[6] | Zhang, X. and Cheng, Y. (2015) Simple Schrödinger Modules Which Are Locally Finite over the Positive Part. Journal of Pure and Applied Algebra, 219, 2799-2815. https://doi.org/10.1016/j.jpaa.2014.09.029 |
[7] | Cai, Y., Shen, R. and Zhang, J. (2016) Whittaker Modules and Quasi-Whittaker Modules for the Euclidean Lie Algebra e(3). Journal of Pure and Applied Algebra, 220, 1419-1433. https://doi.org/10.1016/j.jpaa.2015.09.009 |
[8] | Chen, Y. and Shen, R. (2024) Structure and Representations for Electrical Lie Algebra of Type D5. Algebra Colloquium, 31, 271-284. https://doi.org/10.1142/s100538672400021x |
[9] | Chen, Y., Shen, R. and Zhang, J. (2023) A Class of Simple Modules for Electrical Lie Algebra of Type D5. Journal of Donghua University, 40, 232-236. |