|
Journal of Antennas 2025
基于MEMS技术的太赫兹方向图可重构天线
|
Abstract:
MEMS技术是一种集成微型机械系统和电子系统的技术,可以在微小尺寸、快速响应条件下执行机械功能。为了满足太赫兹通信系统中的多角度波束转向需求,本文设计了一种基于MEMS技术的多状态方向图可重构天线,工作在中心频率为340 GHz,可以实现八种状态的波束扫描。该天线由对数螺旋天线和一组射频微机电系统(RF-MEMS)开关组成,天线结构采用两层石英玻璃衬底,整体尺寸为0.68λ × 0.68λ × 0.2λ,工作带宽达到15%。该天线可以分别在垂直倾角θ = 32?、50?两个平面进行90?步进的方位面波束调控,在两个俯仰面上进行宽角波束扫描。
MEMS technology is a technology that integrates micro-mechanical systems and electronic systems to perform mechanical functions at tiny sizes, with fast response conditions. In order to meet the requirement of multi-angle beam steering in terahertz communication system, a multi-state pattern reconfigurable antenna based on MEMS technology is designed in this paper. It works at the center frequency of 340 GHz and can realize eight beam scanning states. The antenna is composed of logarithmic spiral antenna units and a set of RF-MEMS switches. The antenna structure adopts two layers of quartz glass substrate, the overall size is 0.68λ × 0.68λ × 0.2λ, and the working bandwidth reaches 15%. The antenna can config the azimuth plane beam with 90? resolution in two planes with vertical inclination θ = 32? and 50? respectively, and scan the wide-angle beam in two pitch planes.
[1] | He, Y., Chen, Y., Zhang, L., Wong, S. and Chen, Z.N. (2020) An Overview of Terahertz Antennas. China Communications, 17, 124-165. https://doi.org/10.23919/j.cc.2020.07.011 |
[2] | 王安国, 王鹏, 刘楠, 等. 基于分形概念的方向图可重构蝶形天线设计[J]. 电波科学学报, 2010(3): 603-607. |
[3] | 张乃柏, 王子莱, 黄建明, 等. 一种太赫兹波段方向图可重构天线[P]. 中国专利, CN115207619B. 2023-04-28. |
[4] | Zhou, H., Pal, A., Mehta, A., Mirshekar-Syahkal, D. and Nakano, H. (2018) A Four-Arm Circularly Polarized High-Gain High-Tilt Beam Curl Antenna for Beam Steering Applications. IEEE Antennas and Wireless Propagation Letters, 17, 1034-1038. https://doi.org/10.1109/lawp.2018.2830121 |
[5] | Wu, Y., Qu, M., Jiao, L., et al. (2016) Graphene-Based Yagi-Uda Antenna with Reconfigurable Radiation Patterns. AIP Advances, 6, Article ID: 065308. |
[6] | Zhao, S., Wang, Z. and Dong, Y. (2022) A Planar Pattern-Reconfigurable Antenna with Stable Radiation Performance. IEEE Antennas and Wireless Propagation Letters, 21, 784-788. https://doi.org/10.1109/lawp.2022.3146599 |
[7] | Wang, Z., Liu, S. and Dong, Y. (2022) Compact Wideband Pattern Reconfigurable Antennas Inspired by End-Fire Structure for 5G Vehicular Communication. IEEE Transactions on Vehicular Technology, 71, 4655-4664. https://doi.org/10.1109/tvt.2022.3152354 |
[8] | Liu, Q., Geng, Z., Zhao, R., Li, S., Yao, Z. and Zong, W. (2022) A Wideband Planar Pattern Reconfigurable Antenna for IEEE 802.11ac WLAN Applications. International Journal of RF and Microwave Computer-Aided Engineering, 32, e23323. https://doi.org/10.1002/mmce.23323 |
[9] | Yuan, W., Huang, J., Zhang, X., Cui, K., Wu, W. and Yuan, N. (2023) Wideband Pattern-Reconfigurable Antenna with Switchable Monopole and Vivaldi Modes. IEEE Antennas and Wireless Propagation Letters, 22, 199-203. https://doi.org/10.1109/lawp.2022.3207199 |
[10] | Li, X., Tao, T., Zhu, B., Lei, J., Gao, Y. and Yang, D. (2022) A Pattern Reconfigurable Antenna Applied for Automobile 5G Communication. International Journal of RF and Microwave Computer-Aided Engineering, 32, e23383. https://doi.org/10.1002/mmce.23383 |
[11] | Ullah, S., Elfergani, I., Ahmad, I., Din, I.U., Ullah, S., Rehman Khan, W.U., et al. (2022) A Compact Frequency and Radiation Reconfigurable Antenna for 5G and Multi-Standard Sub-6 GHz Wireless Applications. Wireless Communications and Mobile Computing, 2022, 1-12. https://doi.org/10.1155/2022/4658082 |
[12] | Zhang, X., Ruan, C., Dai, J. and Haq, T.U. (2018) Frequency and Radiation Pattern Reconfigurable Graphene Square Spiral Antenna at Terahertz Band. 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), Auckland, 5-8 August 2018, 1-2. https://doi.org/10.1109/apcap.2018.8538185 |
[13] | Luo, Y., Zeng, Q., Yan, X., Wu, Y., Lu, Q., Zheng, C., et al. (2019) Graphene-Based Multi-Beam Reconfigurable THZ Antennas. IEEE Access, 7, 30802-30808. https://doi.org/10.1109/access.2019.2903135 |
[14] | Yang, G., Zhang, N., Song, R., Cui, G., Liu, N. and Liu, J. (2022) Terahertz Windmill-Shaped Circularly Polarized Pattern Reconfigurable Antenna with MEMS Switches. 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), Chengdu, 26-29 August 2022, 1-5. https://doi.org/10.1109/mape53743.2022.9935165 |
[15] | Feng, Y. and Barker, N.S. (2017) High Performance 500-750 GHz RF MEMS Switch. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, 4-9 June 2017, 1095-1097. https://doi.org/10.1109/mwsym.2017.8058786 |
[16] | 王安国, 张佳杰, 王鹏. 可重构天线的研究现状与发展趋势[J]. 电波科学学报, 2008, 23(5): 997-1002. |
[17] | Kaiser, J. (1960) The Archimedean Two-Wire Spiral Antenna. IRE Transactions on Antennas and Propagation, 8, 312-323. https://doi.org/10.1109/tap.1960.1144840 |
[18] | Zhou, H., Pal, A., Mehta, A., Nakano, H., Modigliana, A., Arampatzis, T., et al. (2018) Reconfigurable Phased Array Antenna Consisting of High-Gain High-Tilt Circularly Polarized Four-Arm Curl Elements for Near Horizon Scanning Satellite Applications. IEEE Antennas and Wireless Propagation Letters, 17, 2324-2328. https://doi.org/10.1109/lawp.2018.2873898 |