全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑气–水–固相互作用的页岩基质表观渗透率模型
Apparent Permeability Model of Shale Matrix Considering the Interaction of Gas-Water-Solid Phases

DOI: 10.12677/apf.2025.141001, PP. 1-12

Keywords: 页岩气,表观渗透率,吸附,原生水,应力敏感,基质收缩
Shale Gas
, Apparent Permeability, Adsorption, Connote Water, Stress Sensitivity, Matrix Shrinkage

Full-Text   Cite this paper   Add to My Lib

Abstract:

微纳米页岩基质孔内气水关系复杂,现有的页岩气表观渗透率模型通常只考虑单相气,且存在作用机理考虑不全面、模型构建方法不准确等问题,导致不能合理地揭示页岩基质传质规律。本文基于基质孔中气–水–固三者之间相互作用,建立了考虑页岩气吸附、应力敏感效应、基质收缩效应和束缚水饱和度等多种因素共同影响下的页岩气表观渗透率模型,进行了基质孔表观渗透率敏感性参数分析。结果表明:基质孔表观渗透率与应力敏感系数和束缚水饱和度呈负相关;表面扩散贡献率与压力和孔径呈负相关关系;黏性流贡献率与压力和孔径呈正相关关系。
The gas-water relationships within micro-nano shale matrix pores are complex. Existing apparent permeability models for shale gas typically only consider single-phase gas flow, and suffer from issues such as incomplete consideration of interaction mechanisms and inaccurate model construction methods, which hinder their ability to reasonably reveal the mass transfer laws in shale matrix. This study establishes an apparent permeability model for shale gas that accounts for the combined effects of stress-sensitive effects, matrix shrinkage effects, and irreducible water saturation, based on the interactions among gas-water-solid phases in matrix pores. A sensitivity analysis of parameters affecting the apparent permeability of matrix pores is conducted. The results show that the apparent permeability of matrix pores is negatively correlated with both the stress-sensitive coefficient and irreducible water saturation. The contribution rate of surface diffusion exhibits a negative correlation with pressure and pore size, while the contribution rate of viscous flow shows a positive correlation with pressure and pore size.

References

[1]  邹才能, 董大忠, 熊伟, 等. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326.
[2]  梁洪彬, 张烈辉, 陈满, 等. 快速评价页岩含气量的新方法[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 110-117.
[3]  李靖, 李相方, 王香增, 等. 页岩无机质孔隙含水饱和度分布量化模型[J]. 石油学报, 2016, 37(7): 903-913.
[4]  曹成, 李天太, 张磊, 等. 考虑基质收缩效应的页岩气双孔双渗模型[J]. 天然气地球科学, 2015, 26(12): 2381-2387.
[5]  梁峰, 吴伟, 张琴, 等. 四川盆地南部下寒武统筇竹寺组页岩孔隙结构特征与页岩气赋存模式[J]. 天然气工业, 2024, 44(3): 131-142.
[6]  任文希, 段又菁, 郭建春, 等. 物理-数据协同驱动的页岩气井产量预测方法[J]. 天然气工业, 2024, 44(9): 127-139.
[7]  胡小虎. 页岩气非均匀压裂水平井非稳态产能评价方法[J]. 断块油气田, 2021, 28(4): 519-524.
[8]  Cui, R., Sun, J., Liu, H., Dong, H. and Yan, W. (2024) Pore Structure and Gas Adsorption Characteristics in Stress-Loaded Shale on Molecular Simulation. Energy, 286, Article ID: 129658.
https://doi.org/10.1016/j.energy.2023.129658

[9]  Zhang, Y., Zhang, B., Liu, B., Liu, J., Wei, Q., Lu, H., et al. (2025) A Model for Apparent Permeability of Organic Slit Nanopores in Shale Gas Based on GCMC Molecular Simulation. Fuel, 381, Article ID: 133236.
https://doi.org/10.1016/j.fuel.2024.133236

[10]  Yu, H., Chen, J., Zhu, Y., Wang, F. and Wu, H. (2017) Multiscale Transport Mechanism of Shale Gas in Micro/Nano-pores. International Journal of Heat and Mass Transfer, 111, 1172-1180.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.050

[11]  宋浩晟, 李波波, 陈帅, 等. 页岩储层动态表观渗透率演化机制[J]. 中国矿业大学学报, 2022, 51(5): 873-885.
[12]  Chen, S. and Peng, X. (2024) A Novel Apparent Permeability Model for Shale Considering the Influence of Multiple Transport Mechanisms. Physics of Fluids, 36, Article ID: 012018.
https://doi.org/10.1063/5.0181882

[13]  Huang, S., Wu, Y., Cheng, L., Liu, H., Xue, Y. and Ding, G. (2018) Apparent Permeability Model for Shale Gas Reservoirs Considering Multiple Transport Mechanisms. Geofluids, 2018, Article ID: 2186194.
https://doi.org/10.1155/2018/2186194

[14]  曹成, 郭浩, 张亮. 考虑有机质和无机质差异的多因素耦合页岩渗透率计算模型[J]. 大庆石油地质与开发, 2022, 41(5): 160-167.
[15]  Li, J., Chen, Z., Wu, K., Li, R., Xu, J., Liu, Q., et al. (2018) Effect of Water Saturation on Gas Slippage in Tight Rocks. Fuel, 225, 519-532.
https://doi.org/10.1016/j.fuel.2018.03.186

[16]  李晓平, 刘蜀东, 李纪, 等. 考虑应力敏感效应和含水影响的页岩基质表观渗透率模型[J]. 天然气地球科学, 2021, 32(6): 861-870.
[17]  李福堂, 黄卫, 陈海霞, 等. 考虑孔隙压缩及煤基质收缩效应的煤层气井产能预测模型及影响因素[J]. 大庆石油地质与开发, 2023, 42(5): 168-174.
[18]  刘骞. 页岩气渗流机制数学表征及Knudsen扩散影响分析[J]. 重庆科技学院学报(自然科学版), 2018, 20(2): 35-38.
[19]  Wang, J., Chen, L., Kang, Q. and Rahman, S.S. (2016) Apparent Permeability Prediction of Organic Shale with Generalized Lattice Boltzmann Model Considering Surface Diffusion Effect. Fuel, 181, 478-490.
https://doi.org/10.1016/j.fuel.2016.05.032

[20]  Wang, S., Shi, J., Wang, K., Sun, Z., Miao, Y. and Hou, C. (2018) Apparent Permeability Model for Gas Transport in Shale Reservoirs with Nano-Scale Porous Media. Journal of Natural Gas Science and Engineering, 55, 508-519.
https://doi.org/10.1016/j.jngse.2018.05.026

[21]  胡志明, 端祥刚, 何亚彬, 等. 储层原生水对页岩气赋存状态与流动能力的影响[J]. 天然气工业, 2018, 38(7): 44-51.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133