This article critically assessed the validity of five multiple linear regression models across three separate studies. The first examined the cytotoxic properties of N-tosyl-1,2,3,4-tetrahydroisoquinoline compounds. The second evaluated the antiproliferative effects of 1,3,5-arylidene rhodanines. The last explored the antitumour potential of thiazoline or thiazine derivatives. Despite limited sample sizes, the model validation showed robust performance and predictive capabilities. However, their forecasts lacked accuracy. The authors validated their models by assessing the fit training data and generalization ability. The gaps weren’t clearly defined, and outliers were only partially considered. The cytotoxicity study of N-Tosyl-1,2,3,4-Tetrahydroisoquinoline used a ±2 standardized residual. Non-random sampling can introduce selection bias. Ignoring dispersion and employing fixed molecules can reduce model accuracy. Adhering to MLR premises aids in validation. Analysis of secondary data from three articles showed that all five MLR models were invalid, emphasizing the need to verify MLR assumptions before utilizing the QSAR approach.
References
[1]
Field, A. (2009) Discovering Statistics Using SPSS. Sage Publication Ltd.
[2]
Pingaew, R., Worachartcheewan, A., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S. and Prachayasittikul, V. (2013) Synthesis, Cytotoxicity and QSAR Study of N-tosyl-1,2,3,4-tetrahydroisoquinoline Derivatives. ArchivesofPharmacalResearch, 36, 1066-1077. https://doi.org/10.1007/s12272-013-0111-9
[3]
Pallant, J. (2023) SPSS Survival Manual: A Step-by-Step Guide to Data Analysis Using IBM SPSS. 7th Edition, Open University Press.
[4]
Green, S.B. (1991) How Many Subjects Does It Take to Do a Regression Analysis. MultivariateBehavioralResearch, 26, 499-510. https://doi.org/10.1207/s15327906mbr2603_7
[5]
Coulibaly, W.K., Affi, S.T., James, T., Koné, M.G.-R., Yao, A.E.B., Dago, C.D., et al. (2022) Anti-Proliferative Activity Study on 5-Arylidene Rhodanine Derivatives Using Density Functional Theory (DFT) and Quantitative Structure Activity Relationship (QSAR). InternationalJournalofComputationalandTheoreticalChemistry, 10, 1-8.
[6]
Dembelé, G.S., Tuo, N.T., Konaté, F., Soro, D., Konaté, B. and Ziao, N. (2022) Quantitative Structure Activity Relationship (QSAR) Study of a Series of Molecules Derived from Thiazoline and Thiazine Multithioether Having Activity against Antitumor Activity (A-549). International Journal of Chemical and Life Sciences, 11, 2426-2435. https://www.researchgate.net/publication/364965605_Quantative_Structure_Activity_Relationship_QSAR_Study_of_a_Series_of_Molecules_Derived_from_Thiazoline_and_Thiazine_Multithioether_Having_Activity_against_Antitumor_Activity_A-549
[7]
Baillargeon, G. (2010) Méthodologies et techniques statistiques, Trois-Rivières: Bibliothèque nationale du Québec, SMG.
[8]
Lv, L., Song, X. and Sun, W. (2020) Modify Leave-One-Out Cross Validation by Moving Validation Samples around Random Normal Distributions: Move-One-Away Cross Validation. AppliedSciences, 10, Article No. 2448. https://doi.org/10.3390/app10072448
[9]
Flatt, C. and Jacobs, R.L. (2019) Principle Assumptions of Regression Analysis: Testing, Techniques, and Statistical Reporting of Imperfect Data Sets. AdvancesinDevelopingHumanResources, 21, 484-502. https://doi.org/10.1177/1523422319869915
[10]
Schmidt, A.F. and Finan, C. (2018) Linear Regression and the Normality Assumption. JournalofClinicalEpidemiology, 98, 146-151. https://doi.org/10.1016/j.jclinepi.2017.12.006
[11]
Yassine, T. (2020) Contribution des technologies de l’information et de la communication au succès de la collaboration client-fournisseur en développement de produits nouveaux. Université de Grenoble Alpes. https://theses.hal.science/tel-02931916/
[12]
Johnson, R. and Wichern, D. (2018) Applied Multivariate Statistical Analysis. 6th Edition, Pearson.
[13]
Nachhilfe, S. (2022) Comment vérifier la condition de linéarité pour le modèle de régression linéaire dans R et SPSS? https://statistiknachhilfe.ch/fr/2022/12/09/voraussetzung-lineare-regression-linearitat/
[14]
Dodge, Y. and Rousson, V. (2004) Analyse de régression appliquée. Dunod.
[15]
Moore, D.S., McCabe, G.P. and Craig, B. (2021) Introduction to the Practice of Statistics. 10th Edition, W.H. Freeman.
[16]
Sing, V. (2025) Multicollinéarité dans la régression: Un guide pour les scientifiques des données. https://www.datacamp.com/fr/tutorial/multicollinearity?form=MG0AV3
[17]
Della-Vedova, C. (s.d.) Régression linéaire simple: Quand les hypothèses ne sont pas satisfaites. https://delladata.fr/regression-lineaire-simple-quand-les-hypotheses-ne-sont-pas-satisfaites/
[18]
Lind, A.D., Marchal, W., Mason, D.R., Satya, G.D., Santosh, K. and Singh, J. (2007) Méthodes statistiques pour les sciences de la gestion. Les éditions de la Chenelière Inc.
[19]
Draper, N.R. and Smith, H. (1998) Applied Regression Analysis. 3rd Edition, Wiley. https://doi.org/10.1002/9781118625590