Aim of Study: Ricinodendronheudelotii (Baill.) (RH) commonly called “Djansang” in Cameroon, has already been reported to possess cardioprotective effect, vasorelaxant and antioxidant properties. This study was undertaken to explore the effect of RH on the development of essential hypertension through nitric oxide (NO) inhibition. Material and Methods: NO deficiency was induced in Wistar rats by oral administration of L-NAME (40 mg/kg/day) for 4 weeks, concomitantly with aqueous extract of RH stem bark (6, 20 and 40 mg/kg, p.o.) or captopril (20 mg/kg, p.o.). Body weight, heart rate, and arterial blood pressure were registered twice weekly throughout the experimental period, using the tail-cuff noninvasive method (CODA system, 4.1). At the end of the treatment, biochemical parameters and oxidative stress markers were assessed in the blood, liver, kidney, heart and aorta homogenates according to standard protocols. The histopathological analyses were also performed on the organs mentioned above. Results: Ricinodendronheudelotii significantly decreases the systolic blood pressure (SBP), the diastolic blood pressure (DBP) and the mean blood pressure (MBP) without modification of heart rate (HR) after 4 weeks of concurrent L-NAME administration. Also, RH improved liver (transaminases, alkaline phosphatase, total proteins) and kidney markers (urea and creatinine), lipid profile (total cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides), oxidative status (superoxide dismutase, catalase, glutathione reductase, nitrites and malondialdehyde), and reduced aortic media thickness. Conclusion: These results suggest that RH, due to its antihypertensive, antioxidant and antihyperlipidemic properties, is a promising preventive agent against hypertension and vascular disorder induced by NO deficiency.
References
[1]
Belemnaba, L., Nitiéma, M., Ilboudo, S., Ouédraogo, G.G., Ouédraogo, N., Belemlilga, M.B., et al. (2021) Preclinical Evaluation of the Antihypertensive Effect of an Aqueous Extract of Anogeissusleiocarpa (DC) Guill et Perr. Bark of Trunk in L-Name-Induced Hypertensive Rat. Journal of Experimental Pharmacology, 13, 739-754. https://doi.org/10.2147/jep.s319787
[2]
Unger, T., Borghi, C., Charchar, F., Khan, N.A., Poulter, N.R., Prabhakaran, D., et al. (2020) 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension, 75, 1334-1357. https://doi.org/10.1161/hypertensionaha.120.15026
[3]
Shaukat, B., Mehmood, M.H., Murtaza, B., Javaid, F., Khan, M.T., Farrukh, M., et al. (2022) Ajuga bracteosa Exerts Antihypertensive Activity in l-Name-Induced Hypertension Possibly through Modulation of Oxidative Stress, Proinflammatory Cytokines, and the Nitric Oxide/Cyclic Guanosine Monophosphate Pathway. ACS Omega, 7, 33307-33319. https://doi.org/10.1021/acsomega.2c03888
[4]
Oparil, S., Zaman, M.A. and Calhoun, D.A. (2003) Pathogenesis of Hypertension. Annals of Internal Medicine, 139, 761-776. https://doi.org/10.7326/0003-4819-139-9-200311040-00011
[5]
Awaad, A.A., El‐Meligy, R.M., Zain, G.M., Safhi, A.A., AL Qurain, N.A., Almoqren, S.S., et al. (2018) Experimental and Clinical Antihypertensive Activity of Matricaria chamomilla Extracts and Their Angiotensin-Converting Enzyme Inhibitory Activity. Phytotherapy Research, 32, 1564-1573. https://doi.org/10.1002/ptr.6086
[6]
Verma, T., Sinha, M., Bansal, N., Yadav, S.R., Shah, K. and Chauhan, N.S. (2020) Plants Used as Antihypertensive. Natural Products and Bioprospecting, 11, 155-184. https://doi.org/10.1007/s13659-020-00281-x
[7]
Ndjenda II, M.K., Nguelefack-Mbuyo, E.P., Atsamo, A.D., Fofie, C.K., Fodem, C., Nguemo, F., et al. (2021) Antihypertensive Effects of the Methanol Extract and the Ethyl Acetate Fraction from Crinum zeylanicum (Amaryllidaceae) Leaves in L-Name-Treated Rat. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 2656249. https://doi.org/10.1155/2021/2656249
[8]
Silva, I.V.G., de Figueiredo, R.C. and Rios, D.R.A. (2019) Effect of Different Classes of Antihypertensive Drugs on Endothelial Function and Inflammation. International Journal of Molecular Sciences, 20, Article 3458. https://doi.org/10.3390/ijms20143458
[9]
Ray, A., Ch. Maharana, K., Meenakshi, S. and Singh, S. (2023) Endothelial Dysfunction and Its Relation in Different Disorders: Recent Update. Health Sciences Review, 7, Article ID: 100084. https://doi.org/10.1016/j.hsr.2023.100084
[10]
Selemidis, S., Dusting, G., Peshavariya, H., Kempharper, B. and Drummond, G. (2007) Nitric Oxide Suppresses NADPH Oxidase-Dependent Superoxide Production by S-Nitrosylation in Human Endothelial Cells. Cardiovascular Research, 75, 349-358. https://doi.org/10.1016/j.cardiores.2007.03.030
[11]
Kho, J., Tian, X., Wong, W., Bertin, T., Jiang, M., Chen, S., et al. (2018) Argininosuccinate Lyase Deficiency Causes an Endothelial-Dependent Form of Hypertension. The American Journal of Human Genetics, 103, 276-287. https://doi.org/10.1016/j.ajhg.2018.07.008
[12]
Seth, M., Hussain, M.E., Pasha, S. and Fahim, M. (2016) Effects of a Novel ACE Inhibitor, 3-(3-Thienyl)-L-Alanyl-Ornithyl-Proline, on Endothelial Vasodilation and Hepatotoxicity in L-Name-Induced Hypertensive Rats. Drug Design, Development and Therapy, 10, 1533-1542. https://doi.org/10.2147/dddt.s77761
[13]
Adedapo, A.D.A., Ajayi, A.M., Ekwunife, N.L., Falayi, O.O., Oyagbemi, A., Omobowale, T.O., et al. (2020) Antihypertensive Effect of Phragmantheraincana (Schum) Balle on Ng-Nitro-L-Arginine Methyl Ester (L-NAME) Induced Hypertensive Rats. Journal of Ethnopharmacology, 257, Article ID: 112888. https://doi.org/10.1016/j.jep.2020.112888
[14]
Miguel-Carrasco, J.L., Mate, A., Monserrat, M.T., Arias, J.L., Aramburu, O. and Vazquez, C.M. (2008) The Role of Inflammatory Markers in the Cardioprotective Effect of L-Carnitine in L-Name-Induced Hypertension. American Journal of Hypertension, 21, 1231-1237. https://doi.org/10.1038/ajh.2008.271
[15]
Kimbu, S.F., Keumedjio, F., Sondengam, L.B. and Connolly, J.D. (1991) Two Dinorditerpenoids from Ricinodendronheudelotii. Phytochemistry, 30, 619-621. https://doi.org/10.1016/0031-9422(91)83738-7
[16]
Yakubu, O.F., Adebayo, A.H., Famakinwa, T.O., Adegbite, O.S., Ishola, T.A., Imonikhe, L.O., et al. (2018) Antimicrobial and Toxicological Studies of Ricinodendronheudelotii (baill.). Asian Journal of Pharmaceutical and Clinical Research, 11, 299-305. https://doi.org/10.22159/ajpcr.2018.v11i1.21251
[17]
Oyono, V.A., Fokunang, C., Assam-Assam, J.P., Voundi, S., Tsafack, P., Mouafo, E.T., et al. (2014) Acute Toxicity Studies, Antioxidant and in Vitro Antibacterial Activities of Extract from the Barks of Ricinodendronheudoletti (Euphorbiaceae). Journal of Pharmacognosy and Phytotherapy, 6, 47-53. https://doi.org/10.5897/jpp2014.0312
[18]
Wanche Kojom, J.J., Bogning, C.Z., Nguemfo, E.L., Sonfack, C.S., Lappa, E.L., Etamé Loé, G., et al. (2022) Antihypertensive Effects of Aqueous Extract of Ricinodendronheudelotii (baill.) Pierre (Euphorbiaceae) in Wistar Rat. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 3305733. https://doi.org/10.1155/2022/3305733
[19]
Kojom, J.J.W., Bogning, C.Z., Lappa, E.L., Sonfack, C.S., Kuinze, A.N., Etamé-Loé, G., et al. (2024) Antioxidant Properties and Vasorelaxant Mechanism of Aqueous Extract of Ricinodendronheudelotii (euphorbiaceae). BioMed Research International, 2024, Article ID: 3435974. https://doi.org/10.1155/2024/3435974
[20]
Kojom, J.J.W., Nguemfo, E.L., Djouatsa, Y.N.N., Bogning, C.Z., Azebaze, A.G.B., Llorent-Martínez, E.J., et al. (2019) Phytochemical, Antihypertensive and Nephroprotective Study of Aqueous Extract of the Stems and Roots of Selaginella vogelii Mett (Selaginellaceae) in Rats. South African Journal of Botany, 127, 256-264. https://doi.org/10.1016/j.sajb.2019.08.030
[21]
Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. (1972) Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clinical Chemistry, 18, 499-502. https://doi.org/10.1093/clinchem/18.6.499
[22]
Wilbur, K.M., Bernheim, F. and Shapiro, O.W. (1949) Determination of Lipid Peroxidation. Archives of Biochemistry and Biophysics, 24, 305-310.
[23]
Ikeda, U., Takahashi, M. and Shimada, K. (2003) C-Reactive Protein Directly Inhibits Nitric Oxide Production by Cytokine-Stimulated Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 42, 607-611. https://doi.org/10.1097/00005344-200311000-00005
[24]
Ellman, G.L. (1959) Tissue Sulfhydryl Groups. Archives of Biochemistry and Biophysics, 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
[25]
Mishra, K., Ojha, H. and Chaudhury, N.K. (2012) Estimation of Antiradical Properties of Antioxidants Using DPPH Assay: A Critical Review and Results. Food Chemistry, 130, 1036-1043. https://doi.org/10.1016/j.foodchem.2011.07.127
[26]
Sinha, A.K. (1972) Colorimetric Assay of Catalase. Analytical Biochemistry, 47, 389-394. https://doi.org/10.1016/0003-2697(72)90132-7
[27]
Park, K. and Park, W.J. (2015) Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. Journal of Korean Medical Science, 30, 1213-1225. https://doi.org/10.3346/jkms.2015.30.9.1213
[28]
Thekkumalai, M. and Ramanathan, V. (2014) Role of Chrysin on Hepatic and Renal Activities of Nω-Nitro-L-Arginine-Methylester Induced Hypertensive Rats. International Journal of Nutrition, Pharmacology, Neurological Diseases, 4, 58-63. https://doi.org/10.4103/2231-0738.124615
[29]
Kimura, D.C., Nagaoka, M.R., Borges, D.R. and Kouyoumdjian, M. (2017) Angiotensin II or Epinephrine Hemodynamic and Metabolic Responses in the Liver of L-NAME Induced Hypertension and Spontaneous Hypertensive Rats. World Journal of Hepatology, 9, 781-790. https://doi.org/10.4254/wjh.v9.i17.781
[30]
Bahgat, A., Abdel‐Aziz, H., Raafat, M., Mahdy, A., El‐Khatib, A.S., Ismail, A., et al. (2008) Solanum indicum ssp. Distichum Extract Is Effective against L-Name-Induced Hypertension in Rats. Fundamental & Clinical Pharmacology, 22, 693-699. https://doi.org/10.1111/j.1472-8206.2008.00627.x
[31]
Metchi Donfack, M.F., Atsamo, A.D., Temdié Guemmogne, R.J., Ngouateu Kenfack, O.B., Dongmo, A.B. and Dimo, T. (2021) Antihypertensive Effects of the Vitex cienkowskii (Verbenaceae) Stem-Bark Extract on L-Name-Induced Hypertensive Rats. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 6668919. https://doi.org/10.1155/2021/6668919
[32]
Ines, C.T., Alain Bertrand, D., Audrey Judith, M.M., Jacquy Joyce, K.W., Rodolphe, D., Kevine, F.M., et al. (2023) Antihypertensive, Ameliorating Effect on Lipid Profile and Oxidative Stress Markers of Aqueous Extract of Pleurotus floridanus in Rats. American Journal of Medical and Clinical Sciences, 8, 1-7. https://doi.org/10.33425/2832-4226/23005
[33]
Abdel-Rahman, R.F., Hessin, A.F., Abdelbaset, M., Ogaly, H.A., Abd-Elsalam, R.M. and Hassan, S.M. (2017) Antihypertensive Effects of Roselle-Olive Combination in L-Name-Induced Hypertensive Rats. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 9460653. https://doi.org/10.1155/2017/9460653
[34]
Aekthammarat, D., Tangsucharit, P., Pannangpetch, P., Sriwantana, T. and Sibmooh, N. (2020) Moringa oleifera Leaf Extract Enhances Endothelial Nitric Oxide Production Leading to Relaxation of Resistance Artery and Lowering of Arterial Blood Pressure. Biomedicine & Pharmacotherapy, 130, Article ID: 110605. https://doi.org/10.1016/j.biopha.2020.110605
[35]
Bentounès, G. and Safar, M. (2011) L’Hypertesnsion Artérielle: Pratique Clinique. Elsevier.
[36]
Raza, M., Al-Shabanath, O., El-Hadiyah, T. and Al-Majed, A. (2002) Effect of Prolonged Vigabatrin Treatment on Hematological and Biochemical Parameters in Plasma, Liver and Kidney of Swiss Albino Mice. Scientia Pharmaceutica, 70, 135-145. https://doi.org/10.3797/scipharm.aut-02-16
[37]
Khattab, M.M., Mostafa, A. and Al-Shabanah, O. (2005) Effects of Captopril on Cardiac and Renal Damage, and Metabolic Alterations in the Nitric Oxide-Deficient Hypertensive Rat. Kidney and Blood Pressure Research, 28, 243-250. https://doi.org/10.1159/000088829
[38]
Afkir, S., Nguelefack, T.B., Aziz, M., Zoheir, J., Cuisinaud, G., Bnouham, M., et al. (2008) Arbutus Unedo Prevents Cardiovascular and Morphological Alterations in L-Name-Induced Hypertensive Rats. Part I: Cardiovascular and Renal Hemodynamic Effects of Arbutus Unedo in L-Name-Induced Hypertensive Rats. Journal of Ethnopharmacology, 116, 288-295. https://doi.org/10.1016/j.jep.2007.11.029
[39]
Rajeshwari, T., Raja, B., Manivannan, J., Silambarasan, T. and Dhanalakshmi, T. (2014) Valproic Acid Prevents the Deregulation of Lipid Metabolism and Renal Renin-Angiotensin System in L-Name Induced Nitric Oxide Deficient Hypertensive Rats. Environmental Toxicology and Pharmacology, 37, 936-945. https://doi.org/10.1016/j.etap.2014.02.008
[40]
Iwakiri, Y. and Kim, M.Y. (2015) Nitric Oxide in Liver Diseases. Trends in Pharmacological Sciences, 36, 524-536. https://doi.org/10.1016/j.tips.2015.05.001
[41]
Ndisang, J.F. and Chibbar, R. (2014) Heme Oxygenase Improves Renal Function by Potentiating Podocyte-Associated Proteins in Nω-Nitro-L-Arginine-Methyl Ester (l-Name)-Induced Hypertension. American Journal of Hypertension, 28, 930-942. https://doi.org/10.1093/ajh/hpu240
[42]
Gulati, A., Dalal, J., Padmanabhan, T.N.C., Jain, P., Patil, S. and Vasnawala, H. (2012) Lipitension: Interplay between Dyslipidemia and Hypertension. Indian Journal of Endocrinology and Metabolism, 16, 240-245. https://doi.org/10.4103/2230-8210.93742
[43]
Nyadjeu, P., Nguelefack-Mbuyo, E.P., Atsamo, A.D., Nguelefack, T.B., Dongmo, A.B. and Kamanyi, A. (2013) Acute and Chronic Antihypertensive Effects of Cinnamomum zeylanicum Stem Bark Methanol Extract in L-Name-Induced Hypertensive Rats. BMC Complementary and Alternative Medicine, 13, Article No. 27. https://doi.org/10.1186/1472-6882-13-27
[44]
Amaeze, O.U., Ayoola, G.A., Sofidiya, M.O., Adepoju-Bello, A.A., Adegoke, A.O. and Coker, H.A.B. (2011) Evaluation of Antioxidant Activity of Tetracarpidiumconophorum (müll. Arg) Hutch & Dalziel Leaves. Oxidative Medicine and Cellular Longevity, 2011, Article ID: 976701. https://doi.org/10.1155/2011/976701
[45]
Vasiljević, Z., Bošković, A., Ostijić, M., Prostan, M. and Kocev N. (1999) Long-Term Effect of Captopril on Plasma Lipids in Acute Myocardial Infarction: Posible Mechanism of Antiatheroslerotical Effect of Ace Inhibition. FactaUniversitasis: Medicine and Biology, 6, 69-72.
[46]
Sun, J., Cao, L. and Liu, H. (2010) ACE Inhibitors in Cardiac Surgery: Current Studies and Controversies. Hypertension Research, 34, 15-22. https://doi.org/10.1038/hr.2010.188
[47]
Rodrigo, R., González, J. and Paoletto, F. (2011) The Role of Oxidative Stress in the Pathophysiology of Hypertension. Hypertension Research, 34, 431-440. https://doi.org/10.1038/hr.2010.264
[48]
Maneesai, P., Prasarttong, P., Bunbupha, S., Kukongviriyapan, U., Kukongviriyapan, V., Tangsucharit, P., et al. (2016) Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in L-Name-Induced Hypertensive Rats via Restoration of Enos and AT1R Expression. Nutrients, 8, Article 122. https://doi.org/10.3390/nu8030122
[49]
Rincón, J., Correia, D., Arcaya, J.L., Finol, E., Fernández, A., Pérez, M., et al. (2015) Role of Angiotensin II Type 1 Receptor on Renal NAD(P)H Oxidase, Oxidative Stress and Inflammation in Nitric Oxide Inhibition Induced-Hypertension. Life Sciences, 124, 81-90. https://doi.org/10.1016/j.lfs.2015.01.005
[50]
Vaziri, N.D., Wang, X.Q., Oveisi, F. and Rad, B. (2000) Induction of Oxidative Stress by Glutathione Depletion Causes Severe Hypertension in Normal Rats. Hypertension, 36, 142-146. https://doi.org/10.1161/01.hyp.36.1.142
[51]
Soliman, E., Behairy, S.F., El-maraghy, N.N. and Elshazly, S.M. (2019) PPAR-γ Agonist, Pioglitazone, Reduced Oxidative and Endoplasmic Reticulum Stress Associated with L-NAME-Induced Hypertension in Rats. Life Sciences, 239, Article ID: 117047. https://doi.org/10.1016/j.lfs.2019.117047
[52]
Li, C. and Wang, M. (2014) Potential Biological Activities of Magnoflorine: A Compound from Aristolochia Debilis Sieb. et Zucc. Korean Journal of Plant Resources, 27, 223-228. https://doi.org/10.7732/kjpr.2014.27.3.223
[53]
Sieber, M.A. and Hegel, J.K.E. (2013) Azelaic Acid: Properties and Mode of Action. Skin Pharmacology and Physiology, 27, 9-17. https://doi.org/10.1159/000354888
[54]
Husain, N. and Mahmood, R. (2018) 3, 4-Dihydroxybenzaldehyde Quenches ROS and RNS and Protects Human Blood Cells from Cr(vi)-Induced Cytotoxicity and Genotoxicity. Toxicology in Vitro, 50, 293-304. https://doi.org/10.1016/j.tiv.2018.04.004
[55]
Kim, S. and Iwao, H. (2000) Molecular and Cellular Mechanisms of Angiotensin II-Mediated Cardiovascular and Renal Diseases. Pharmacological Reviews, 52, 11-34. https://doi.org/10.1016/s0031-6997(24)01434-0
[56]
Gavras, I. and Gavras, H. (2002) Angiotensin II as a Cardiovascular Risk Factor. Journal of Human Hypertension, 16, S2-S6. https://doi.org/10.1038/sj.jhh.1001392
[57]
Heeneman, S., Sluimer, J.C. and Daemen, M.J.A.P. (2007) Angiotensin-Converting Enzyme and Vascular Remodeling. Circulation Research, 101, 441-454. https://doi.org/10.1161/circresaha.107.148338
[58]
Langston, F.M.A., Nash, G.R. and Bows, J.R. (2021) The Retention and Bioavailability of Phytochemicals in the Manufacturing of Baked Snacks. Critical Reviews in Food Science and Nutrition, 63, 2141-2177. https://doi.org/10.1080/10408398.2021.1971944