全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

荷叶多糖的提取工艺优化及其在面包中的应用研究
Optimization of Extraction Process and Bread Application of Lotus Leaves Polysaccharides

DOI: 10.12677/amb.2025.142013, PP. 104-116

Keywords: 荷叶多糖,复合酶辅助,热水浸提法,响应面法,抗氧化活性
Lotus Leaf Polysaccharides
, Compound Enzyme-Assisted Extraction, Hot Water Extraction, Response Surface Methodology, Antioxidant Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

以多糖得率为指标,采用响应面法优化酶法辅助热水提取荷叶多糖的工艺条件,并测定荷叶多糖的抗氧化活性。在单因素实验中的最优条件为:pH 6.5,提取温度50℃,液料比30:1 (mL/g),复合酶添加量0.6%,提取时间80 min;在响应面实验中,确定最佳联合提取工艺为:pH 6.8、液料比24:1 (mL/g)、复合酶用量0.63%,该条件下荷叶多糖得率最高,为3.70%。同时考察了该多糖的自由基清除效能及其在面包中的抗氧化表现,发现其DPPH (2,2-diphenyl-1-picrylhydrazyl radical)自由基清除率达到了69.16%,这表明荷叶多糖具有优异的抗氧化活性。研究结果为未来荷叶中有效组分的提取、抗氧化性能研究和产品开发提供了理论依据。
Using polysaccharide yield as the evaluation index, response surface methodology was employed to optimize the enzyme-assisted hot water extraction process of lotus leaf polysaccharides. The antioxidant activity of LLPs was subsequently determined. Considering factors such as time, energy consumption, and extraction yield, the single-factor experiments identified optimal conditions as follows: pH 6.5, extraction temperature 50?C, liquid-to-material ratio 30:1 (mL/g), complex enzyme dosage 0.6%, and extraction time 80 min. Through RSM optimization, the ideal combined extraction parameters were established as pH 6.8, liquid-to-material ratio 24:1 (mL/g), and complex enzyme dosage 0.63%. Under these conditions, the maximum theoretical LLP yield reached 3.70%. The study further investigated the free radical scavenging capacity and antioxidant performance of LLPs in bread. The DPPH (2,2-diphenyl-1-picrylhydrazyl radical) scavenging rate reached 69.16%, demonstrating excellent antioxidant activity. These findings provide a theoretical foundation for future extraction of bioactive components from lotus leaves, research on their antioxidant properties, and product development.

References

[1]  高振华, 孙伶俐, 王豪, 等. 荷叶化学成分及其药理活性研究[J]. 广东化工, 2020, 47(5): 100-102.
[2]  Song, Y., Han, A., Lim, T., Lee, E. and Hong, H. (2019) Isolation, Purification, and Characterization of Novel Polysaccharides from Lotus (Nelumbo nucifera) Leaves and Their Immunostimulatory Effects. International Journal of Biological Macromolecules, 128, 546-555.
https://doi.org/10.1016/j.ijbiomac.2019.01.131
[3]  Yang, M., Chang, Y., Chan, K., Lee, Y. and Wang, C. (2011) Flavonoid-Enriched Extracts from Nelumbo nucifera Leaves Inhibits Proliferation of Breast Cancer in Vitro and in Vivo. European Journal of Integrative Medicine, 3, e153-e163.
https://doi.org/10.1016/j.eujim.2011.08.008
[4]  Do, T.C.M.V., Nguyen, T.D., Tran, H., Stuppner, H. and Ganzera, M. (2013) Analysis of Alkaloids in Lotus (Nelumbo nucifera Gaertn.) Leaves by Non-Aqueous Capillary Electrophoresis Using Ultraviolet and Mass Spectrometric Detection. Journal of Chromatography A, 1302, 174-180.
https://doi.org/10.1016/j.chroma.2013.06.002
[5]  孙晔, 戴妙妙, 缪存铅, 等. 荷叶挥发油对肉类抑菌活性的影响因素研究[J]. 食品工业, 2009, 30(6): 12-14.
[6]  Zhang, L., Tu, Z., Wang, H., Kou, Y., Wen, Q., Fu, Z., et al. (2015) Response Surface Optimization and Physicochemical Properties of Polysaccharides from Nelumbo nucifera Leaves. International Journal of Biological Macromolecules, 74, 103-110.
https://doi.org/10.1016/j.ijbiomac.2014.11.020
[7]  Zeng, Z., Xu, Y. and Zhang, B. (2016) Antidiabetic Activity of a Lotus Leaf Selenium (Se)-Polysaccharide in Rats with Gestational Diabetes Mellitus. Biological Trace Element Research, 176, 321-327.
https://doi.org/10.1007/s12011-016-0829-6
[8]  Wu, D., Feng, K., Huang, L., Gan, R., Hu, Y. and Zou, L. (2021) Deep Eutectic Solvent-Assisted Extraction, Partially Structural Characterization, and Bioactivities of Acidic Polysaccharides from Lotus Leaves. Foods, 10, Article 2330.
https://doi.org/10.3390/foods10102330
[9]  Li, M., Li, T., Hu, X., Ren, G., Zhang, H., Wang, Z., et al. (2021) Structural, Rheological Properties and Antioxidant Activities of Polysaccharides from Mulberry Fruits (Murus alba L.) Based on Different Extraction Techniques with Superfine Grinding Pretreatment. International Journal of Biological Macromolecules, 183, 1774-1783.
https://doi.org/10.1016/j.ijbiomac.2021.05.108
[10]  Abuduwaili, A., Rozi, P., Mutailifu, P., Gao, Y., Nuerxiati, R., Aisa, H.A., et al. (2019) Effects of Different Extraction Techniques on Physicochemical Properties and Biological Activities of Polysaccharides from Fritillaria pallidiflora Schrenk. Process Biochemistry, 83, 189-197.
https://doi.org/10.1016/j.procbio.2019.05.020
[11]  余捷. 荷叶多糖的提取优化、结构表征及其体外抗炎抗氧化活性研究[D]: [硕士学位论文]. 荆州: 长江大学, 2023.
[12]  Chen, S., Shang, H., Yang, J., Li, R. and Wu, H. (2018) Effects of Different Extraction Techniques on Physicochemical Properties and Activities of Polysaccharides from Comfrey (Symphytum officinale L.) Root. Industrial Crops and Products, 121, 18-25.
https://doi.org/10.1016/j.indcrop.2018.04.063
[13]  Zhang, Y., Li, S., Wang, X., Zhang, L. and Cheung, P.C.K. (2011) Advances in Lentinan: Isolation, Structure, Chain Conformation and Bioactivities. Food Hydrocolloids, 25, 196-206.
https://doi.org/10.1016/j.foodhyd.2010.02.001
[14]  Liu, Q., Li, P., Chen, J., Li, C., Jiang, L., Luo, M., et al. (2019) Optimization of Aqueous Enzymatic Extraction of Castor (Ricinus communis) Seeds Oil Using Response Surface Methodology. Journal of Biobased Materials and Bioenergy, 13, 114-122.
https://doi.org/10.1166/jbmb.2019.1812
[15]  夏蕴实, 刘畅, 王梓, 孙印石. 复合酶水酶法提取鹿油及其脂肪酸组成分析[J]. 食品工业, 2021, 42(12): 108-112.
[16]  Feng, K., Huang, L., Wu, D., Li, F., Gan, R., Qin, W., et al. (2022) Physicochemical Properties and in Vitro Bioactivities of Polysaccharides from Lotus Leaves Extracted by Different Techniques and Solvents. Journal of Food Measurement and Characterization, 16, 1583-1594.
https://doi.org/10.1007/s11694-021-01256-3
[17]  李美东, 黄秀芳, 罗凯. 壶瓶碎米荠多糖的提取、分离及抗氧化活性研究[J]. 中国食品学报, 2022, 22(4): 196-207.
[18]  Fournière, M., Bedoux, G., Lebonvallet, N., Leschiera, R., Le Goff-Pain, C., Bourgougnon, N., et al. (2021) Poly-and Oligosaccharide Ulva Sp. Fractions from Enzyme-Assisted Extraction Modulate the Metabolism of Extracellular Matrix in Human Skin Fibroblasts: Potential in Anti-Aging Dermo-Cosmetic Applications. Marine Drugs, 19, Article 156.
https://doi.org/10.3390/md19030156
[19]  Huang, C., Peng, X., Pang, D., Li, J., Paulsen, B.S., Rise, F., et al. (2021) Pectic Polysaccharide from Nelumbo nucifera Leaves Promotes Intestinal Antioxidant Defense in vitro and in vivo. Food & Function, 12, 10828-10841.
https://doi.org/10.1039/d1fo02354c
[20]  宋永瑞, 韩爱玲, 林泰国, 等. 荷叶多糖的分离、纯化及其免疫刺激作用研究[J]. 国际生物大分子杂志, 2019(128): 546-555.
[21]  Zhang, Z., Kong, F., Ni, H., Mo, Z., Wan, J., Hua, D., et al. (2016) Structural Characterization, α-Glucosidase Inhibitory and DPPH Scavenging Activities of Polysaccharides from Guava. Carbohydrate Polymers, 144, 106-114.
https://doi.org/10.1016/j.carbpol.2016.02.030

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133