|
基于图神经网络的电网设备拓扑感知型故障预测的算法
|
Abstract:
为应对电网设备运行状态的复杂演化与多维拓扑关联特性,本文提出一种基于图卷积网络(GCN)与门控循环单元(GRU)联合建模的拓扑感知型故障预测算法。该方法以电网拓扑构建图结构,融合两类关键特征:一是设备运行状态构成的时间序列数据(如电压、电流、有功/无功功率),二是节点的静态拓扑属性(如节点度、聚类系数与中介中心性)。GCN模块用于捕捉每一时间步的空间邻域特征,GRU模块建模节点状态的时间演化,实现对空间依赖与动态趋势的联合学习。实验结果表明,所提方法在故障预测准确率方面相较纯GCN提升4.3%,相较SVM提升12.7%;在F1分数与召回率等指标上亦明显优于对比模型。
To address the complex evolution and multidimensional topological dependencies of power grid equipment operation, this paper proposes a topology-aware fault prediction algorithm based on the joint modeling of Graph Convolutional Networks (GCN) and Gated Recurrent Units (GRU). The method constructs a graph structure based on the power grid topology and integrates two key types of features: (1) Time-series data representing device operational states (e.g., voltage, current, active/reactive power), and (2) Static topological attributes of each node (e.g., node degree, clustering coefficient, and betweenness centrality). The GCN module captures spatial neighborhood features at each time step, while the GRU module models the temporal evolution of node states, achieving joint learning of spatial dependencies and dynamic trends. Experimental results show that the proposed method improves fault prediction accuracy by 4.3% compared to a pure GCN model and by 12.7% compared to a Support Vector Machine (SVM). It also outperforms baseline models in terms of F1-score and recall.
[1] | 蒲天骄, 乔骥, 赵紫璇, 等. 面向电力系统智能分析的机器学习可解释性方法研究(一): 基本概念与框架[J]. 中国电机工程学报, 2023, 43(18): 7010-7030. |
[2] | 杨博, 陈义军, 姚伟, 等. 基于新一代人工智能技术的电力系统稳定评估与决策综述[J]. 电力系统自动化, 2022, 46(22): 200-223. |
[3] | Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G. (2009) The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20, 61-80. https://doi.org/10.1109/tnn.2008.2005605 |
[4] | 王竟成, 张勇, 胡永利, 等. 基于图卷积网络的交通预测综述[J]. 北京工业大学学报, 2021, 47(8): 954-970. |
[5] | 魏晓辉, 孙冰怡, 崔佳旭. 基于图神经网络的兴趣活动推荐算法[J]. 吉林大学学报 (工学版), 2021, 51(1): 278-284. |
[6] | 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263. |
[7] | 廖文龙, 于贇, 王煜森, 等. 基于图卷积网络的配电网无功优化[J]. 电网技术, 2020, 45(6): 2150-2160. |
[8] | 庄颖睿, 肖谭南, 程林, 等. 基于时空图卷积网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2022, 46(11): 11-18. |
[9] | 汪维泰, 王晓强, 李雷孝, 等. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45. |
[10] | Bui, K.N., Cho, J. and Yi, H. (2021) Spatial-Temporal Graph Neural Network for Traffic Forecasting: An Overview and Open Research Issues. Applied Intelligence, 52, 2763-2774. https://doi.org/10.1007/s10489-021-02587-w |
[11] | Longa, A., Lachi, V., Santin, G., et al. (2023) Graph Neural Networks for Temporal Graphs: State of the Art, Open Challenges, and Opportunities. |
[12] | Geng, S. and Wang, X. (2022) Predictive Maintenance Scheduling for Multiple Power Equipment Based on Data-Driven Fault Prediction. Computers & Industrial Engineering, 164, Article 107898. https://doi.org/10.1016/j.cie.2021.107898 |
[13] | Zhang, S., Wang, Y., Liu, M. and Bao, Z. (2018) Data-Based Line Trip Fault Prediction in Power Systems Using LSTM Networks and SVM. IEEE Access, 6, 7675-7686. https://doi.org/10.1109/access.2017.2785763 |
[14] | Yang, X. (2021) Power Grid Fault Prediction Method Based on Feature Selection and Classification Algorithm. International Journal of Electronics Engineering and Applications, 9, 34-44. https://doi.org/10.30696/ijeea.ix.ii.2021.34-44 |
[15] | Hosseinzadeh, J., Masoodzadeh, F. and Roshandel, E. (2019) Fault Detection and Classification in Smart Grids Using Augmented K-NN Algorithm. SN Applied Sciences, 1, Article No. 1627. https://doi.org/10.1007/s42452-019-1672-0 |
[16] | Varbella, A., Gjorgiev, B. and Sansavini, G. (2023) Geometric Deep Learning for Online Prediction of Cascading Failures in Power Grids. Reliability Engineering & System Safety, 237, Article 109341. https://doi.org/10.1016/j.ress.2023.109341 |
[17] | Li, Y., Xue, C., Zargari, F. and Li, Y.R. (2023) From Graph Theory to Graph Neural Networks (GNNs): The Opportunities of GNNs in Power Electronics. IEEE Access, 11, 145067-145084. https://doi.org/10.1109/access.2023.3345795 |
[18] | 董雷, 陈振平, 韩富佳, 等. 基于图卷积神经网络与 K-means 聚类的居民用户集群短期负荷预测[J]. 电网技术, 2022, 47(10): 4291-4301. |
[19] | 胡博, 张鹏飞, 黄恩泽, 等. 基于图 WaveNet 的电动汽车充电负荷预测[J]. 电力系统自动化, 2022, 46(16): 207-213. |
[20] | 钟智, 管霖, 苏寅生, 等. 基于图注意力深度网络的电力系统暂态稳定评估[J]. 电网技术, 2020, 45(6): 2122-2130. |
[21] | 杨秀, 蒋家富, 刘方, 等. 基于注意力机制和卷积神经网络的配电网拓扑辨识[J]. 电网技术, 2022, 46(5): 1672-1682. |
[22] | 刘晓磊, 段征宇, 余庆, 等. 基于图卷积循环神经网络的城市轨道客流预测[J]. 华南理工大学学报(自然科学版), 2022, 50(3): 21-27 |
[23] | 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68. |
[24] | Zhou, H., Ren, D., Xia, H., Fan, M., Yang, X. and Huang, H. (2021) AST-GNN: An Attention-Based Spatio-Temporal Graph Neural Network for Interaction-Aware Pedestrian Trajectory Prediction. Neurocomputing, 445, 298-308. https://doi.org/10.1016/j.neucom.2021.03.024 |
[25] | Zheng, L., Li, Z., Li, J., Li, Z. and Gao, J. (2019) AddGraph: Anomaly Detection in Dynamic Graph Using Attention-Based Temporal GCN. Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, 10-16 August 2019, 4419-4425. https://doi.org/10.24963/ijcai.2019/614 |
[26] | Pena, I., Martinez-Anido, C.B. and Hodge, B. (2018) An Extended IEEE 118-Bus Test System with High Renewable Penetration. IEEE Transactions on Power Systems, 33, 281-289. https://doi.org/10.1109/tpwrs.2017.2695963 |
[27] | Gonzalez, J.E., Low, Y., Gu, H., et al. (2012) {PowerGraph}: Distributed {Graph-Parallel} Computation on Natural Graphs. 2012 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), California, 8-10 October 2012, 17-30. |