全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深层页岩干酪根热成熟度对CH4/CO2气体吸附机理影响机制研究
Adsorption Mechanisms and Mathematical Models of CH4/CO2 in Kerogen with Thermal Maturity

DOI: 10.12677/jogt.2025.472027, PP. 228-239

Keywords: 页岩气,干酪根,分子模拟,吸附机理,数学模型
Shale Gas
, Kerogen, Molecular Simulation, Adsorption Mechanisms, Mathematical Modeling

Full-Text   Cite this paper   Add to My Lib

Abstract:

在全球能源转型背景下,页岩气高效开发与CO?地质封存的协同优化需求迫切。干酪根作为页岩气吸附的核心载体,目前仍然缺乏不同干酪根热成熟度对CH?/CO?吸附行为影响的研究。通过分子动力学构建3类非均质干酪根纳米孔隙模型,结合蒙特卡洛方法模拟储层温压条件下气体的吸附行为,并对比吸附数学模型的拟合效果。结果显示:① CH?/CO?气体在干酪根上的吸附量呈现III-A型 > II-C型 > I-A型的规律,归因于Ⅲ型干酪根因孔隙结构复杂、范德华力强且极性基团丰富;② 温度升高会导致吸附量下降,符合放热吸附机制,而压力升高使吸附行为经历低压时指数增长、中压时缓慢增长和高压时趋于饱和;③ 模型对比表明,L-F模型因引入多层吸附及分子间作用修正项,拟合效果最佳。该研究揭示了干酪根热成熟度对气体吸附的调控机理,可为页岩气开采和CO?封存技术的优化提供了理论支持。
In the context of global energy transformation, there is an urgent need for collaborative optimization between efficient shale gas development and geological CO? sequestration. Kerogen, acting as the primary medium for shale gas adsorption, has seen limited research regarding how varying degrees of kerogen thermal maturity influence the adsorption behavior of CH?/CO?. By employing molecular dynamics simulations, three distinct heterogeneous kerogen nanopore models were developed. Using the Monte Carlo method, the gas adsorption behavior under reservoir temperature and pressure conditions was analyzed. Additionally, the fitting performance of various adsorption mathematical models was compared. The findings are summarized as follows: ① The adsorption capacity of CH?/CO? on kerogen follows the order of Type III-A > Type II -C > Type I -A. This trend can be attributed to the intricate pore structure, strong van der Waals forces, and abundant polar groups characteristic of Type III kerogen; ② An increase in temperature results in reduced adsorption capacity, consistent with the exothermic nature of the adsorption process. Meanwhile, increasing pressure leads to exponential growth at low pressures, gradual growth at intermediate pressures, and saturation at high pressures; ③ Model comparisons reveal that the L-F model demonstrates superior fitting performance due to its incorporation of multi-layer adsorption and intermolecular interaction correction terms. This study elucidates the regulatory mechanism of kerogen thermal maturity on gas adsorption and offers theoretical guidance for enhancing shale gas extraction and CO? sequestration technologies.

References

[1]  包一翔, 李井峰, 郭强, 等. 二氧化碳用于地质资源开发及同步封存技术综述[J]. 煤炭科学技术, 2022, 50(6): 84-95.
[2]  侯梅芳, 潘松圻, 刘翰林. 世界能源转型大势与中国油气可持续发展战略[J]. 天然气工业, 2021, 41(12): 9-16.
[3]  郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468.
[4]  王科, 李海涛, 李留杰, 等. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
[5]  蓝宝锋, 杨瑞东, 戴金星, 等. 四川盆地盆外缘安场向斜富有机质页岩储层精细刻画及水平井靶窗优选[J]. 天然气地球科学, 2024, 35(12): 2184-2195.
[6]  杨滔, 曾联波, 聂海宽, 等. 湘中坳陷海陆过渡相页岩吸附能力及控制因素[J]. 岩性油气藏, 2019, 31(2): 105-114.
[7]  包琦, 叶航, 刘琦, 等. 不同地质体中CO2封存研究进展[J]. 低碳化学与化工, 2024, 49(3): 87-96.
[8]  Fu, Y., Zhang, R., Jiang, Y., Fan, X. and Gu, Y. (2023) Experimental Studies on Pore Structure and the Gas Content Evolution Mechanisms of Shale Gas Reservoirs at Different Burial Depths in the Longmaxi Formation, Southern Sichuan Basin. Applied Sciences, 13, Article 13194.
https://doi.org/10.3390/app132413194
[9]  Liu, A., Liu, S., Zhang, K. and Xia, K. (2025) Competitive Sorption of CH₄ and CO₂ on Coals: Implications for Carbon Geo-Storage. Separation and Purification Technology, 354, Article ID: 129399.
https://doi.org/10.1016/j.seppur.2024.129399
[10]  Chang, C., Zhang, J., Hu, H., Zhang, D. and Zhao, Y. (2022) Molecular Simulation of Adsorption in Deep Marine Shale Gas Reservoirs. Energies, 15, Article 944.
https://doi.org/10.3390/en15030944
[11]  许晨曦, 薛海涛, 李波宏, 等. 页岩气在矿物孔隙中的微观吸附机理差异性研究[J]. 特种油气藏, 2020, 27(4): 79-84.
[12]  李晶辉, 韩鑫, 黄思婧, 等. 页岩干酪根吸附规律的分子模拟研究[J]. 油气藏评价与开发, 2022, 12(3): 455-461.
[13]  方镕慧, 刘晓强, 张聪, 等. 温度压力耦合作用下的页岩气吸附分子模拟——以鄂西地区下寒武统为例[J]. 天然气地球科学, 2022, 33(1): 138-152.
[14]  陈佳乐, 马妮萍, 国建华, 等. 页岩气在粗糙纳米孔中吸附和输运的分子模拟[J]. 原子与分子物理学报, 2024, 41(5): 67-74.
[15]  黄亮, 陈秋桔, 吴建发, 等. 深层页岩伊利石中甲烷吸附特征分子模拟[J]. 中南大学学报(自然科学版), 2022, 53(9): 3522-3531.
[16]  冉敬, 杜谷, 潘忠习. 衰减全反射-傅里叶红外光谱法快速测试干酪根样品[J]. 岩矿测试, 2010, 29(2): 113-117.
[17]  朱光有, 艾依飞, 李婷婷, 等. 非常规同位素在石油地质学中的应用与油气地球化学新进展[J]. 石油学报, 2024, 45(4): 718-754.
[18]  Ungerer, P., Collell, J. and Yiannourakou, M. (2014) Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity. Energy & Fuels, 29, 91-105.
https://doi.org/10.1021/ef502154k
[19]  Helgeson, C.H., Richard, L., McKenzie, F.W., et al. (2009) A Chemical and Thermodynamic Model of Oil Generation in Hydrocarbon Source Rocks. Geochimica et Cosmochimica Acta, 73, 594-695.
https://doi.org/10.1016/j.gca.2008.03.004
[20]  Vandenbroucke, M. and Largeau, C. (2007) Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38, 719-833.
https://doi.org/10.1016/j.orggeochem.2007.01.001
[21]  姚晨牧, 冯丽, 安亚雄, 等. 碳材料的分子模型及模拟方法在吸附中应用的研究进展[J]. 低碳化学与化工, 2021, 46(S1): 1-9.
[22]  熊健, 林海宇, 李原杰, 等. 富有机质页岩中不同矿物的解吸规律[J]. 石油学报, 2022, 43(7): 989-997.
[23]  田守嶒, 王天宇, 李根生, 等. 页岩不同类型干酪根内甲烷吸附行为的分子模拟[J]. 天然气工业, 2017, 37(12): 18-25.
[24]  黄亮, 宁正福, 王庆, 等. 湿度对CH4/CO2在干酪根中吸附的影响: 分子模拟研究[J]. 石油科学通报, 2017, 2(3): 422-430.
[25]  Yu, S., Bo, J. and Fengjuan, L. (2019) Competitive Adsorption of CO2/N2/CH4 onto Coal Vitrinite Macromolecular: Effects of Electrostatic Interactions and Oxygen Functionalities. Fuel, 235, 23-38.
https://doi.org/10.1016/j.fuel.2018.07.087
[26]  朱阳升, 宋学行, 郭印同, 等. 四川盆地龙马溪组页岩的CH4和CO2气体高压吸附特征及控制因素[J]. 天然气地球科学, 2016, 27(10): 1942-1952.
[27]  Yan, J.P., Zhang, T.W., Li, Y.F., et al. (2013) Effect of the Organic Matter Characteristics on Methane Adsorption in Shale. Journal of China Coal Society, 38, 805-811.
[28]  Zhang, T., Ellis, G.S., Ruppel, S.C., Milliken, K. and Yang, R. (2012) Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems. Organic Geochemistry, 47, 120-131.
https://doi.org/10.1016/j.orggeochem.2012.03.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133