全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

等离子体激励下NH3/CH4射流火焰特性的实验研究
Experimental Study on the Characteristics of NH3/CH4 Jet Flame Excited by Plasma

DOI: 10.12677/aepe.2025.133015, PP. 135-147

Keywords: 射流火焰,NH3/CH4共燃,火焰图像处理,等离子体,火焰高度
Jet Flame
, NH3/CH4 Co-Combustion, Flame Image Processing, Plasma, Flame Height

Full-Text   Cite this paper   Add to My Lib

Abstract:

为应对氨燃料燃烧过程中存在的效率低和火焰不稳定等挑战,本文提出了一种耦合等离子体的氨掺混燃烧方案。通过掺混高反应活性燃料甲烷提升氨火焰稳定性,辅助等离子体助燃技术以进一步提高氨掺混燃烧效率。首先,搭建氨/甲烷燃烧实验系统,设计介质阻挡放电(DBD)等离子体发生器。其次,采集火焰动态实验图像及等离子体电参数,并通过图像处理技术定量分析火焰特性,探讨等离子体激励下氨/甲烷共燃的火焰形态及燃烧特性。实验结果表明,DBD等离子体的引入显著降低火焰高度并增加火焰宽度,其热效应与化学活性加速了燃烧反应进程;外加电压的提升增强了等离子体电离强度,促进活性粒子生成,扩大火焰扩散范围;掺氨比的增加使得火焰传播速度降低,火焰锋面缩短,导致火焰高度持续下降,而火焰宽度则呈现整体减少的趋势。
To cope with the challenges of low efficiency and flame instability in the combustion process of ammonia fuel, this paper proposes an ammonia blending combustion scheme coupled with plasma. The stability of ammonia flame is improved by mixing high reactivity fuel methane, and the plasma-assisted combustion technology is used to further improve the combustion efficiency of ammonia blending. Firstly, an ammonia/methane combustion experimental system was built, and a dielectric barrier discharge (DBD) plasma generator was designed. Secondly, the flame dynamic experimental images and plasma electrical parameters were collected, and the flame characteristics were quantitatively analyzed by image processing technology. The flame morphology and combustion characteristics of ammonia/methane co-combustion under plasma excitation were discussed. The experimental results show that the introduction of DBD plasma significantly reduces the flame height and increases the flame width, and its thermal effect and chemical activity accelerates the combustion reaction process. The increase of the applied voltage enhances the ionization intensity of the plasma, promotes the generation of active particles, and expands the flame diffusion range. The increase of ammonia ratio reduces the flame propagation speed and shortens the flame front, resulting in a continuous decrease in flame height, while the flame width shows an overall decreasing trend.

References

[1]  MacFarlane, D.R., Cherepanov, P.V., Choi, J., Suryanto, B.H.R., Hodgetts, R.Y., Bakker, J.M., et al. (2020) A Roadmap to the Ammonia Economy. Joule, 4, 1186-1205.
https://doi.org/10.1016/j.joule.2020.04.004
[2]  Dolan, R.H., Anderson, J.E. and Wallington, T.J. (2021) Outlook for Ammonia as a Sustainable Transportation Fuel. Sustainable Energy & Fuels, 5, 4830-4841.
https://doi.org/10.1039/d1se00979f
[3]  Lee, H. and Lee, M.J. (2021) Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction. Energies, 14, Article 5604.
https://www.mdpi.com/1996-1073/14/18/5604
https://doi.org/10.3390/en14185604
[4]  张屿, 赵义军, 曾光,等. 氨燃料强化燃烧技术研究进展[J]. 能源环境保护, 2023, 37(5): 129-144.
[5]  赵争辉, 李航锦, 吴超杭, 等. H2与氨混燃增强火焰燃烧特性模拟研究[J]. 电力科技与环保, 2024, 40(1): 18-27.
[6]  Kang, L., Pan, W., Zhang, J., Wang, W. and Tang, C. (2023) A Review on Ammonia Blends Combustion for Industrial Applications. Fuel, 332, Article ID: 126150.
https://doi.org/10.1016/j.fuel.2022.126150
[7]  He, C., Jiang, J., Sun, M., Yu, Y., Liu, K. and Zhang, B. (2022) Analysis of the NH3 Blended Ratio on the Impinging Flame Structure in Non-Premixed CH4/NH3/Air Combustion. Fuel, 330, Article ID: 125559.
https://doi.org/10.1016/j.fuel.2022.125559
[8]  Ji, L., Wang, J., Hu, G., Mao, R., Zhang, W. and Huang, Z. (2022) Experimental Study on Structure and Blow-Off Characteristics of NH3/CH4 Co-Firing Flames in a Swirl Combustor. Fuel, 314, Article ID: 123027.
https://doi.org/10.1016/j.fuel.2021.123027
[9]  Nourani Najafi, S.B., Mokhov, A.V. and Levinsky, H.B. (2022) Investigation of the Stability, Radiation, and Structure of Laminar Coflow Diffusion Flames of CH4/NH3 Mixtures. Combustion and Flame, 244, Article ID: 112282.
https://doi.org/10.1016/j.combustflame.2022.112282
[10]  Xie, M., Tu, Y. and Peng, Q. (2023) Numerical Study of NH3/CH4 MILD Combustion with Conjugate Heat Transfer Model in a Down-Fired Lab-Scale Furnace. Applications in Energy and Combustion Science, 14, Article ID: 100144.
https://doi.org/10.1016/j.jaecs.2023.100144
[11]  Zhang, M., An, Z., Wei, X., Wang, J., Huang, Z. and Tan, H. (2021) Emission Analysis of the CH4/NH3/Air Co-Firing Fuels in a Model Combustor. Fuel, 291, Article ID: 120135.
https://doi.org/10.1016/j.fuel.2021.120135
[12]  Lacoste, D.A. (2023) Flames with Plasmas. Proceedings of the Combustion Institute, 39, 5405-5428.
https://doi.org/10.1016/j.proci.2022.06.025
[13]  Ju, Y. and Sun, W. (2015) Plasma Assisted Combustion: Dynamics and Chemistry. Progress in Energy and Combustion Science, 48, 21-83.
https://doi.org/10.1016/j.pecs.2014.12.002
[14]  Deng, J., Wang, P., Sun, Y., Zhou, J., Luo, Y. and He, D. (2022) Design and Experimental Investigation of a Dual Swirl Combined DBD Plasma Combustor Head Actuator. Sensors and Actuators A: Physical, 344, Article ID: 113707.
https://doi.org/10.1016/j.sna.2022.113707
[15]  Zare, S., Lo, H.W., Roy, S. and Askari, O. (2020) On the Low-Temperature Plasma Discharge in Methane/Air Diffusion Flames. Energy, 197, Article ID: 117185.
https://doi.org/10.1016/j.energy.2020.117185
[16]  李森, 陶正德, 韩微笑, 等. 介质阻挡放电辅助稀薄甲烷-空气燃烧点火过程的一维数值模拟[J]. 真空科学与技术学报, 2023, 43(7): 609-617.
[17]  陈庆亚, 聂万胜, 陈川, 等. 介质阻挡体放电对甲烷扩散火焰特性的影响[J]. 工程热物理学报, 2021, 42(3): 768-775.
[18]  Kim, G.T., Park, J., Chung, S.H. and Yoo, C.S. (2024) Synergistic Effect of Non-Thermal Plasma and CH4 Addition on Turbulent NH3/Air Premixed Flames in a Swirl Combustor. International Journal of Hydrogen Energy, 49, 521-532.
https://doi.org/10.1016/j.ijhydene.2023.08.213
[19]  Liwei, Z., Liqiu, W., Na, S., Desheng, Z., Hong, L., Yongjie, D., et al. (2022) Energy Conversion Analysis of Ion Wind in Surface Dielectric Barrier Discharge at Low Pressure. Physica B: Condensed Matter, 640, Article ID: 414069.
https://doi.org/10.1016/j.physb.2022.414069
[20]  Hayakawa, A., Goto, T., Mimoto, R., Kudo, T. and Kobayashi, H. (2015) NO Formation/Reduction Mechanisms of Ammonia/Air Premixed Flames at Various Equivalence Ratios and Pressures. Mechanical Engineering Journal, 2, 14-00402.
https://doi.org/10.1299/mej.14-00402

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133