|
Bergman空间上一类斜Toeplitz算子的交换性
|
Abstract:
本文主要研究单位圆盘的Bergman空间上斜Toeplitz算子的交换性问题,利用Mellin变换得到以径向函数为符号的斜Toeplitz算子与解析斜Toeplitz算子可交换的一个必要条件,以及以特殊径向函数为符号的斜Toeplitz算子与解析斜Toeplitz算子可交换的充要条件;并得到以函数
为符号的斜Toeplitz算子与解析斜Toeplitz算子可交换的充要条件。
In this paper, we primarily investigate the commutativity of the slant Toeplitz operator on the Bergman space of the unit disk. Using the Mellin transform, we obtain one necessary condition and some sufficient and necessary conditions for slant Toeplitz operators with radial symbols that commute with slant Toeplitz operators with analytic symbols, and the sufficient and necessary conditions for the commutativity of slant Toeplitz operators with function
and slant Toeplitz operators with analytic symbols.
[1] | Ho, M. (1996) Properties of Slant Toeplitz Operators. Indiana University Mathematics Journal, 45, 843-862. https://doi.org/10.1512/iumj.1996.45.1973 |
[2] | Ho, M.C. (1997) Spectra of Slant Toeplitz Operators with Continuous Symbols. Michigan Mathematical Journal, 44, 157-166. https://doi.org/10.1307/mmj/1029005627 |
[3] | Ho, M.C. (1997) Adjoints of Slant Toeplitz Operators. Integral Equations and Operator Theory, 29, 301-312. https://doi.org/10.1007/bf01320703 |
[4] | Ho, M.C. (2001) Adjoints of Slant Toeplitz Operators II. Integral Equations and Operator Theory, 41, 179-188. https://doi.org/10.1007/bf01295304 |
[5] | Arora, S.C. and Batra, R. (2003) On Generalized Slant Toeplitz Operators. Indian Journal of Mathematics, 45, 121-134. |
[6] | Arora, S.C. and Batra, R. (2004) On Generalized Slant Toeplitz Operators with Continuous Symbols. Yokohama Mathematical Journal, 51, 1-9. |
[7] | Arora, S.C. and Batra, R. (2005) Generalized Slant Toeplitz Operators on H2. Mathematische Nachrichten, 278, 347-355. https://doi.org/10.1002/mana.200310244 |
[8] | 安恒斌, 蹇人宜. Bergman空间上的斜Toeplitz算子[J]. 数学学报, 2004, 47(1): 103-110. |
[9] | Yang, J., Leng, A. and Lu, Y. (2007) K-Order Slant Toeplitz Operators on the Bergman Space. Northeastern Mathematical Journal, 23, 403-412. |
[10] | Lu, Y., Liu, C. and Yang, J. (2010) Commutativity of Kth-Order Slant Toeplitz Operators. Mathematische Nachrichten, 283, 1304-1313. https://doi.org/10.1002/mana.200710100 |
[11] | 章国凤, 于涛. Dirichlet空间上的斜Toeplitz算子[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 50-55. |
[12] | 朱洪敏. 单位多圆盘上Bergman空间上的k阶斜Toeplitz算子的一些研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2012. |
[13] | Liu, C. and Lu, Y. (2013) Product and Commutativity of Kth-Order Slant Toeplitz Operators. Abstract and Applied Analysis, 45, 900-914. |
[14] | Liu, C. and Lu, Y. (2013) Product and Commutativity of Slant Toeplitz Operators. Journal of Mathematical Research with Applications, 33, 122-126. |
[15] | 刘朝美, 倪维丹. Bergman空间上k阶斜Toeplitz算子的正规性及亚正规性[J]. 大连交通大学学报, 2016, 37(1): 113-116. |
[16] | 刘朝美, 高娇娇. 双圆盘的Bergman空间上k阶斜Toeplitz算子的交换性[J]. 大连交通大学学报, 2017, 38(5): 115-117+120. |
[17] | Singh, S.K.K. and Gupta, A. (2017) Kth-Order Slant Toeplitz Operators on the Fock Space. Advances in Operator Theory, 2, 318-333. |
[18] | Datt, G. and Ohri, N. (2018) Properties of Slant Toeplitz Operators on the Torus. Malaysian Journal of Mathematical Sciences, 12, 195-209. |
[19] | Datt, G. and Ohri, N. (2019) Slant Toeplitz operators on the Lebesgue Space of the Torus. Khayyam Journal of Mathematics, 5, 65-76. |
[20] | Datt, G. and Pandey, S.K. (2020) Compression of Slant Toeplitz Operators on the Hardy Space of $n$-Dimensional Torus. Czechoslovak Mathematical Journal, 70, 997-1018. https://doi.org/10.21136/cmj.2020.0088-19 |
[21] | Hazarika, M. and Marik, S. (2020) Reducing and Minimal Reducing Subspaces of Slant Toeplitz Operators. Advances in Operator Theory, 5, 336-346. https://doi.org/10.1007/s43036-019-00022-z |
[22] | 杜巧玲, 许安见. Hardy空间上的斜Toeplitz算子的极小约化子空间[J]. 重庆理工大学学报(自然科学), 2021, 35(8): 224-229. |
[23] | Pandey, S.K. and Datt, G. (2021) Multivariate Version of Slant Toeplitz Operators on the Lebesgue Space. Asian-European Journal of Mathematics, 14, Article 2150152. https://doi.org/10.1142/s1793557121501527 |
[24] | Hazarika, M. and Marik, S. (2021) Toeplitz and Slant Toeplitz Operators on the Polydisk. Arab Journal of Mathematical Sciences, 27, 73-93. https://doi.org/10.1016/j.ajmsc.2019.02.003 |
[25] | Łanucha, B. and Michalska, M. (2022) Compressions of Kth-Order Slant Toeplitz Operators to Model Spaces. Lithuanian Mathematical Journal, 62, 69-87. https://doi.org/10.1007/s10986-021-09548-3 |
[26] | 刘朝美, 张文婷, 蒋志娟. 加权Bergman空间上一类斜Toeplitz算子的交换性[J]. 理论数学, 2022, 12(10): 1693-1701. https://doi.org/10.12677/PM.2022.1210183 |
[27] | 赵彩竹, 许安见. 单位圆周Lebesgue空间的3阶斜Toeplitz算子的极小约化子空间[J]. 重庆师范大学学报(自然科学版), 2023, 40(4): 117-121. |
[28] | 刘朝美, 蒋志娟. 加权Bergman空间上具有调和符号的斜Toeplitz算子的正规性及亚正规性[J]. 应用数学进展, 2023, 12(4): 1620-1633. https://doi.org/10.12677/AAM.2023.124167 |
[29] | Zhu, K.H. (1990) Operator Theory in Function Spaces. M. Dekker. |
[30] | Louhichi, I. and Zakariasy, L. (2005) On Toeplitz Operators with Quasihomogeneous Symbols. Archiv der Mathematik, 85, 248-257. https://doi.org/10.1007/s00013-005-1198-0 |