|
陕西省气象干旱事件的识别及时空演变特征研究
|
Abstract:
基于1961~2024年陕西省100个气象站逐日观测数据,采用Penman-Monteith公式估算潜在蒸散量,构建标准化降水蒸散指数(SPEI),从时间演变、空间分布及干旱事件识别与迁移特征等方面,系统分析陕西省气象干旱的时空变化特征及其主控因子。结果表明,陕西省年平均SPEI自1980年代起持续下降,干旱程度显著加剧,2015~2019年达到极端重旱水平。季节上表现为“冬春偏干、夏季湿润、秋季再干”的年内变化。空间上,冬季干旱最严重,夏季则受季风影响显著转湿。相关性分析显示,不同气象因子对SPEI的影响存在显著区域差异,气温、地温在陕北与SPEI呈正相关,而相对湿度则在全省表现为正相关。通过三维空间聚类识别出22次典型干旱事件,发现其呈现“持续时间长 + 覆盖范围广”的演变特征,2000年后干旱事件持续性显著增强,干旱空间迁移以南北向为主,有明显的方向性扩展趋势。研究结果揭示了区域干旱演变特征,可为干旱监测与风险防控提供科学依据。
Based on daily observational data from 100 meteorological stations in Shaanxi Province from 1961 to 2024, potential evapotranspiration was estimated using the Penman-Monteith equation, and the Standardized Precipitation Evapotranspiration Index (SPEI) was constructed. The spatiotemporal variation characteristics and controlling factors of meteorological drought in Shaanxi Province were systematically analyzed from the perspectives of temporal evolution, spatial distribution, and drought event identification and migration features. The results show that the annual mean SPEI in Shaanxi Province has continuously decreased since the 1980s, with drought severity significantly intensifying and reaching extreme-to-severe levels during 2015~2019. Seasonally, intra-annual variation manifests as “drier in winter and spring, wetter in summer, and drier again in autumn”. Spatially, winter drought is most severe, whereas summer conditions become significantly wetter under monsoon influence. Correlation analysis indicates marked regional differences in the impact of meteorological factors on SPEI: air temperature and 5 cm soil temperature in northern Shaanxi are positively correlated with SPEI, while relative humidity exhibits a positive correlation across the entire province. Through three-dimensional spatial clustering, 22 typical drought events were identified, revealing an evolution characterized by “long duration and wide coverage”. After 2000, drought event persistence significantly increased, and spatial migration of droughts primarily followed a north-south trajectory, exhibiting a clear directional expansion trend. These findings elucidate the regional evolution characteristics of drought and provide a scientific basis for drought monitoring and risk prevention and control.
[1] | Devereux, S. (2000) Famine in the Twentieth Century. Institute of Development Studies. |
[2] | Mishra, A.K. and Singh, V.P. (2010) A Review of Drought Concepts. Journal of Hydrology, 391, 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012 |
[3] | Zhang, Q., Han, L.Y., Lin, J.J. and Cheng, Q.Y. (2018) North-South Differences in Chinese Agricultural Losses Due to Climate-Change-Influenced Droughts. Theoretical and Applied Climatology, 131, 719-732. https://doi.org/10.1007/s00704-016-2000-x |
[4] | 张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500-521. |
[5] | Zargar, A., Sadiq, R., Naser, B. and Khan, F.I. (2011) A Review of Drought Indices. Environmental Reviews, 19, 333-349. https://doi.org/10.1139/a11-013 |
[6] | Henry, A.J. (1906) The Climatology of the United States. US Weather Bureau Bulletin. |
[7] | Blumenstock, G. (1942) Drought in the United States Analyzed by Means of the Theory of Probability. United States Department of Agriculture, Economic Research Service. |
[8] | Mckee, T.B., Doesken, N.J. and Kleist, J. (1993) The Relationship of Drought Frequency and Duration to Time Scales. Proceedings of the 8th Conference on Applied Climatology, Boston, 17-22 January 1993, 179-184. |
[9] | Vicente-Serrano, S.M., Beguería, S. and López-Moreno, J.I. (2010) A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23, 1696-1718. https://doi.org/10.1175/2009jcli2909.1 |
[10] | Wang, J., Zhang, Q., Zhang, L., Wang, Y., Yue, P., Hu, Y., et al. (2022) The Global Pattern and Development Trends and Directions on the Drought Monitoring Research from 1983 to 2020 by Using Bibliometric Analysis. Bulletin of the American Meteorological Society, 103, E2081-E2107. https://doi.org/10.1175/bams-d-21-0324.1 |
[11] | Li, L., She, D., Zheng, H., Lin, P. and Yang, Z. (2020) Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. Journal of Hydrometeorology, 21, 1513-1530. https://doi.org/10.1175/jhm-d-19-0290.1 |
[12] | 葛杰. 陕西省气象干旱时空变化特征与成因分析[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2019. |
[13] | 闫彩, 张鑫, 孙媛, 等. 基于SPEI的陕西省干旱特征及其对玉米产量的影响[J]. 节水灌溉, 2023(1): 10-18. |
[14] | 景兰舒, 黄喜峰, 李勇民, 等. 1973-2023年陕北地区气象干旱时空演变规律分析[J]. 中国防汛抗旱, 2025, 35(5): 9-15. |
[15] | 张勇, 黄俊芳, 刘璐, 等. 基于SPEI的陕西苹果产区近60a干旱变化特征[J]. 中国农学通报, 2024, 40(23): 105-117. |
[16] | Ye, Y., González-Vidal, A., Zamora-Izquierdo, M.A. and Skarmeta, A.F. (2025) Transfer and Deep Learning Models for Daily Reference Evapotranspiration Estimation and Forecasting in Spain from Local to National Scale. Smart Agricultural Technology, 11, Article 100886. https://doi.org/10.1016/j.atech.2025.100886 |
[17] | Shu, Z., Jin, J., Menzel, L., et al. (2025) Evaluating the Performance of Different Surface Resistance Schemes Coupled with the Penman-Monteith Model. Journal of Hydrology, 656, Article 130174. |
[18] | 王健顺. 基于机器学习方法的中国北方干旱时空特征及其影响因素研究[D]: [博士学位论文]. 兰州: 兰州大学, 2024. |
[19] | Lloyd‐Hughes, B. (2011) A Spatio‐Temporal Structure‐based Approach to Drought Characterisation. International Journal of Climatology, 32, 406-418. https://doi.org/10.1002/joc.2280 |
[20] | 王学锦. 中国北方农牧交错带植被恢复的水文气候效应[D]: [博士学位论文]. 兰州: 兰州大学, 2023. |
[21] | 聂明秋. 考虑时空连续的气象干旱迁移及其向农业干旱的传递研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2022. |
[22] | 刘陈立. 基于生态系统健康-风险-服务的甘南高寒牧区生态安全评价[D]: [博士学位论文]. 兰州: 兰州大学, 2022. |